Testing serial independence with functional data
Author
Abstract
Suggested Citation
DOI: 10.1007/s11749-020-00732-0
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Germán Aneiros & Ricardo Cao & Philippe Vieu, 2019. "Editorial on the special issue on Functional Data Analysis and Related Topics," Computational Statistics, Springer, vol. 34(2), pages 447-450, June.
- Alexander Aue & Lajos Horváth & Daniel F. Pellatt, 2017.
"Functional Generalized Autoregressive Conditional Heteroskedasticity,"
Journal of Time Series Analysis, Wiley Blackwell, vol. 38(1), pages 3-21, January.
- Aue, Alexander & Horvath, Lajos & Pellatt, Daniel, 2015. "Functional generalized autoregressive conditional heteroskedasticity," MPRA Paper 67702, University Library of Munich, Germany.
- Davidson, James, 1994. "Stochastic Limit Theory: An Introduction for Econometricians," OUP Catalogue, Oxford University Press, number 9780198774037.
- Chen, Feifei & Meintanis, Simos G. & Zhu, Lixing, 2019. "On some characterizations and multidimensional criteria for testing homogeneity, symmetry and independence," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 125-144.
- Hörmann, Siegfried & Horváth, Lajos & Reeder, Ron, 2013. "A Functional Version Of The Arch Model," Econometric Theory, Cambridge University Press, vol. 29(2), pages 267-288, April.
- Giacomini, Raffaella & Politis, Dimitris N. & White, Halbert, 2013.
"A Warp-Speed Method For Conducting Monte Carlo Experiments Involving Bootstrap Estimators,"
Econometric Theory, Cambridge University Press, vol. 29(3), pages 567-589, June.
- Raffaella Giacomini & Dimitris N. Politis & Halbert White, 2012. "A warp-speed method for conducting Monte Carlo experiments involving bootstrap estimators," CeMMAP working papers CWP11/12, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Raffaella Giacomini & Dimitris N. Politis & Halbert White, 2012. "A warp-speed method for conducting Monte Carlo experiments involving bootstrap estimators," CeMMAP working papers 11/12, Institute for Fiscal Studies.
- Cencheng Shen & Carey E. Priebe & Joshua T. Vogelstein, 2020. "From Distance Correlation to Multiscale Graph Correlation," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(529), pages 280-291, January.
- Gabrys, Robertas & Kokoszka, Piotr, 2007. "Portmanteau Test of Independence for Functional Observations," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 1338-1348, December.
- Cerovecki, Clément & Francq, Christian & Hörmann, Siegfried & Zakoïan, Jean-Michel, 2019.
"Functional GARCH models: The quasi-likelihood approach and its applications,"
Journal of Econometrics, Elsevier, vol. 209(2), pages 353-375.
- Cerovecki, Clément & Francq, Christian & Hormann, Siegfried & Zakoian, Jean-Michel, 2018. "Functional GARCH models: the quasi-likelihood approach and its applications," MPRA Paper 83990, University Library of Munich, Germany.
- Horváth, Lajos & Hušková, Marie & Rice, Gregory, 2013. "Test of independence for functional data," Journal of Multivariate Analysis, Elsevier, vol. 117(C), pages 100-119.
- Horváth, Lajos & Rice, Gregory, 2015. "Testing for independence between functional time series," Journal of Econometrics, Elsevier, vol. 189(2), pages 371-382.
- Jiang, Qing & Hušková, Marie & Meintanis, Simos G. & Zhu, Lixing, 2019. "Asymptotics, finite-sample comparisons and applications for two-sample tests with functional data," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 202-220.
- John Nolan, 2013. "Multivariate elliptically contoured stable distributions: theory and estimation," Computational Statistics, Springer, vol. 28(5), pages 2067-2089, October.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Mihyun Kim & Piotr Kokoszka & Gregory Rice, 2024. "Projection-based white noise and goodness-of-fit tests for functional time series," Statistical Inference for Stochastic Processes, Springer, vol. 27(3), pages 693-724, October.
- Matsui, Muneya & Mikosch, Thomas & Roozegar, Rasool & Tafakori, Laleh, 2022. "Distance covariance for random fields," Stochastic Processes and their Applications, Elsevier, vol. 150(C), pages 280-322.
- Aneiros, Germán & Horová, Ivana & Hušková, Marie & Vieu, Philippe, 2022. "On functional data analysis and related topics," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
- Meintanis, Simos G. & Hušková, Marie & Hlávka, Zdeněk, 2022. "Fourier-type tests of mutual independence between functional time series," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
- Petr Čoupek & Viktor Dolník & Zdeněk Hlávka & Daniel Hlubinka, 2024. "Fourier approach to goodness-of-fit tests for Gaussian random processes," Statistical Papers, Springer, vol. 65(5), pages 2937-2972, July.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Meintanis, Simos G. & Hušková, Marie & Hlávka, Zdeněk, 2022. "Fourier-type tests of mutual independence between functional time series," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
- Rice, Gregory & Wirjanto, Tony & Zhao, Yuqian, 2019. "Tests for conditional heteroscedasticity with functional data and goodness-of-fit tests for FGARCH models," MPRA Paper 93048, University Library of Munich, Germany.
- Horváth, Lajos & Liu, Zhenya & Rice, Gregory & Wang, Shixuan, 2020.
"A functional time series analysis of forward curves derived from commodity futures,"
International Journal of Forecasting, Elsevier, vol. 36(2), pages 646-665.
- Lajos Horváth & Zhenya Liu & Gregory Rice & Shixuan Wang, 2020. "A functional time series analysis of forward curves derived from commodity futures," Post-Print hal-03513421, HAL.
- Rice, Gregory & Wirjanto, Tony & Zhao, Yuqian, 2020. "Forecasting value at risk with intra-day return curves," International Journal of Forecasting, Elsevier, vol. 36(3), pages 1023-1038.
- Gregory Rice & Tony Wirjanto & Yuqian Zhao, 2020. "Tests for conditional heteroscedasticity of functional data," Journal of Time Series Analysis, Wiley Blackwell, vol. 41(6), pages 733-758, November.
- Zhang, Xianyang, 2016. "White noise testing and model diagnostic checking for functional time series," Journal of Econometrics, Elsevier, vol. 194(1), pages 76-95.
- Atefeh Zamani & Hossein Haghbin & Maryam Hashemi & Rob J. Hyndman, 2022.
"Seasonal functional autoregressive models,"
Journal of Time Series Analysis, Wiley Blackwell, vol. 43(2), pages 197-218, March.
- Atefeh Zamani & Hossein Haghbin & Maryam Hashemi & Rob J Hyndman, 2019. "Seasonal Functional Autoregressive Models," Monash Econometrics and Business Statistics Working Papers 16/19, Monash University, Department of Econometrics and Business Statistics.
- Rice, Gregory & Wirjanto, Tony & Zhao, Yuqian, 2021. "Exploring volatility of crude oil intra-day return curves: a functional GARCH-X Model," MPRA Paper 109231, University Library of Munich, Germany.
- Lee, Sangyeol & Meintanis, Simos G. & Pretorius, Charl, 2022. "Monitoring procedures for strict stationarity based on the multivariate characteristic function," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
- Krzyśko Mirosław & Smaga Łukasz, 2020. "Measuring and Testing Mutual Dependence of Multivariate Functional Data," Statistics in Transition New Series, Statistics Poland, vol. 21(3), pages 21-37, September.
- Baye Matar Kandji, 2023. "On the growth rate of superadditive processes and the stability of functional GARCH models," Working Papers 2023-07, Center for Research in Economics and Statistics.
- Mirosław Krzyśko & Łukasz Smaga, 2020. "Measuring and Testing Mutual Dependence of Multivariate Functional Data," Statistics in Transition New Series, Polish Statistical Association, vol. 21(3), pages 21-37, September.
- Mestre, Guillermo & Portela, José & Rice, Gregory & Muñoz San Roque, Antonio & Alonso, Estrella, 2021. "Functional time series model identification and diagnosis by means of auto- and partial autocorrelation analysis," Computational Statistics & Data Analysis, Elsevier, vol. 155(C).
- Mihyun Kim & Piotr Kokoszka & Gregory Rice, 2024. "Projection-based white noise and goodness-of-fit tests for functional time series," Statistical Inference for Stochastic Processes, Springer, vol. 27(3), pages 693-724, October.
- Hušková, Marie & Meintanis, Simos G. & Pretorius, Charl, 2020. "Tests for validity of the semiparametric heteroskedastic transformation model," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
- Chen, Feifei & Jiménez–Gamero, M. Dolores & Meintanis, Simos & Zhu, Lixing, 2022. "A general Monte Carlo method for multivariate goodness–of–fit testing applied to elliptical families," Computational Statistics & Data Analysis, Elsevier, vol. 175(C).
- Rice, Gregory & Wirjanto, Tony & Zhao, Yuqian, 2023. "Exploring volatility of crude oil intraday return curves: A functional GARCH-X model," Journal of Commodity Markets, Elsevier, vol. 32(C).
- Horváth, Lajos & Rice, Gregory & Zhao, Yuqian, 2022. "Change point analysis of covariance functions: A weighted cumulative sum approach," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
- Axel Bücher & Holger Dette & Florian Heinrichs, 2023. "A portmanteau-type test for detecting serial correlation in locally stationary functional time series," Statistical Inference for Stochastic Processes, Springer, vol. 26(2), pages 255-278, July.
- Cerovecki, Clément & Francq, Christian & Hörmann, Siegfried & Zakoïan, Jean-Michel, 2019.
"Functional GARCH models: The quasi-likelihood approach and its applications,"
Journal of Econometrics, Elsevier, vol. 209(2), pages 353-375.
- Cerovecki, Clément & Francq, Christian & Hormann, Siegfried & Zakoian, Jean-Michel, 2018. "Functional GARCH models: the quasi-likelihood approach and its applications," MPRA Paper 83990, University Library of Munich, Germany.
More about this item
Keywords
Functional data; Serial independence; Empirical characteristic function; Testing;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:testjl:v:30:y:2021:i:3:d:10.1007_s11749-020-00732-0. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.