IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v189y2022ics0047259x21001512.html
   My bibliography  Save this article

Fourier-type tests of mutual independence between functional time series

Author

Listed:
  • Meintanis, Simos G.
  • Hušková, Marie
  • Hlávka, Zdeněk

Abstract

We suggest tests of independence between time series of functional observations. The tests are based on characteristic functions which are appropriately estimated from functional observations. The limit distribution of the new test statistic is obtained under the null hypothesis, while under alternatives it is shown that the same test statistic almost surely diverges as the sample size increases. Since the limit null distribution is complicated, a bootstrap version of the test is suggested to assess the test’s performance in finite samples. Also, an application illustrates the use of the method with real data from financial markets. Extension to tests of mutual independence for multiple time series is also considered.

Suggested Citation

  • Meintanis, Simos G. & Hušková, Marie & Hlávka, Zdeněk, 2022. "Fourier-type tests of mutual independence between functional time series," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
  • Handle: RePEc:eee:jmvana:v:189:y:2022:i:c:s0047259x21001512
    DOI: 10.1016/j.jmva.2021.104873
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X21001512
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2021.104873?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Horváth, Lajos & Kokoszka, Piotr & Rice, Gregory, 2014. "Testing stationarity of functional time series," Journal of Econometrics, Elsevier, vol. 179(1), pages 66-82.
    2. Federico A. Bugni & Peter Hall & Joel L. Horowitz & George R. Neumann, 2009. "Goodness-of-fit tests for functional data," Econometrics Journal, Royal Economic Society, vol. 12(s1), pages 1-18, January.
    3. Andrew W. Lo, A. Craig MacKinlay, 1988. "Stock Market Prices do not Follow Random Walks: Evidence from a Simple Specification Test," The Review of Financial Studies, Society for Financial Studies, vol. 1(1), pages 41-66.
    4. Manteiga, Wenceslao Gonzalez & Vieu, Philippe, 2007. "Statistics for Functional Data," Computational Statistics & Data Analysis, Elsevier, vol. 51(10), pages 4788-4792, June.
    5. Chen, Feifei & Meintanis, Simos G. & Zhu, Lixing, 2019. "On some characterizations and multidimensional criteria for testing homogeneity, symmetry and independence," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 125-144.
    6. Chenlu Ke & Xiangrong Yin, 2020. "Expected Conditional Characteristic Function-based Measures for Testing Independence," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(530), pages 985-996, April.
    7. Shubhadeep Chakraborty & Xianyang Zhang, 2019. "Distance Metrics for Measuring Joint Dependence with Application to Causal Inference," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(528), pages 1638-1650, October.
    8. Degui Li & Peter M. Robinson & Han Lin Shang, 2020. "Long-Range Dependent Curve Time Series," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(530), pages 957-971, April.
    9. Zdeněk Hlávka & Marie Hušková & Simos G. Meintanis, 2021. "Testing serial independence with functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(3), pages 603-629, September.
    10. Helmut Herwartz & Simone Maxand, 2020. "Nonparametric tests for independence: a review and comparative simulation study with an application to malnutrition data in India," Statistical Papers, Springer, vol. 61(5), pages 2175-2201, October.
    11. Shao, Xiaofeng, 2010. "The Dependent Wild Bootstrap," Journal of the American Statistical Association, American Statistical Association, vol. 105(489), pages 218-235.
    12. Cencheng Shen & Carey E. Priebe & Joshua T. Vogelstein, 2020. "From Distance Correlation to Multiscale Graph Correlation," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(529), pages 280-291, January.
    13. Mirosław Krzyśko & Łukasz Smaga, 2020. "Measuring and Testing Mutual Dependence of Multivariate Functional Data," Statistics in Transition New Series, Polish Statistical Association, vol. 21(3), pages 21-37, September.
    14. Gabrys, Robertas & Kokoszka, Piotr, 2007. "Portmanteau Test of Independence for Functional Observations," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 1338-1348, December.
    15. Norbert Henze & María Dolores Jiménez‐Gamero, 2021. "A test for Gaussianity in Hilbert spaces via the empirical characteristic functional," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(2), pages 406-428, June.
    16. Fan, Yanan & de Micheaux, Pierre Lafaye & Penev, Spiridon & Salopek, Donna, 2017. "Multivariate nonparametric test of independence," Journal of Multivariate Analysis, Elsevier, vol. 153(C), pages 189-210.
    17. Gabrys, Robertas & Horváth, Lajos & Kokoszka, Piotr, 2010. "Tests for Error Correlation in the Functional Linear Model," Journal of the American Statistical Association, American Statistical Association, vol. 105(491), pages 1113-1125.
    18. Meintanis, Simos G. & Iliopoulos, George, 2008. "Fourier methods for testing multivariate independence," Computational Statistics & Data Analysis, Elsevier, vol. 52(4), pages 1884-1895, January.
    19. Horváth, Lajos & Hušková, Marie & Rice, Gregory, 2013. "Test of independence for functional data," Journal of Multivariate Analysis, Elsevier, vol. 117(C), pages 100-119.
    20. Horváth, Lajos & Rice, Gregory, 2015. "Testing for independence between functional time series," Journal of Econometrics, Elsevier, vol. 189(2), pages 371-382.
    21. Jiang, Qing & Hušková, Marie & Meintanis, Simos G. & Zhu, Lixing, 2019. "Asymptotics, finite-sample comparisons and applications for two-sample tests with functional data," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 202-220.
    22. Hlávka, Zdeněk & Hlubinka, Daniel & Koňasová, Kateřina, 2022. "Functional ANOVA based on empirical characteristic functionals," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    23. Aneiros, Germán & Cao, Ricardo & Fraiman, Ricardo & Genest, Christian & Vieu, Philippe, 2019. "Recent advances in functional data analysis and high-dimensional statistics," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 3-9.
    24. Hlávka, Zdenek & Husková, Marie & Meintanis, Simos G., 2011. "Tests for independence in non-parametric heteroscedastic regression models," Journal of Multivariate Analysis, Elsevier, vol. 102(4), pages 816-827, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Manfoumbi Djonguet, Terence Kevin & Nkiet, Guy Martial, 2024. "An independence test for functional variables based on kernel normalized cross-covariance operator," Journal of Multivariate Analysis, Elsevier, vol. 202(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zdeněk Hlávka & Marie Hušková & Simos G. Meintanis, 2021. "Testing serial independence with functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(3), pages 603-629, September.
    2. Axel Bücher & Holger Dette & Florian Heinrichs, 2023. "A portmanteau-type test for detecting serial correlation in locally stationary functional time series," Statistical Inference for Stochastic Processes, Springer, vol. 26(2), pages 255-278, July.
    3. Marc Hallin & Simos Meintanis & Klaus Nordhausen, 2024. "Consistent Distribution–Free Affine–Invariant Tests for the Validity of Independent Component Models," Working Papers ECARES 2024-04, ULB -- Universite Libre de Bruxelles.
    4. Rice, Gregory & Wirjanto, Tony & Zhao, Yuqian, 2019. "Tests for conditional heteroscedasticity with functional data and goodness-of-fit tests for FGARCH models," MPRA Paper 93048, University Library of Munich, Germany.
    5. Aneiros, Germán & Horová, Ivana & Hušková, Marie & Vieu, Philippe, 2022. "On functional data analysis and related topics," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    6. Petr Čoupek & Viktor Dolník & Zdeněk Hlávka & Daniel Hlubinka, 2024. "Fourier approach to goodness-of-fit tests for Gaussian random processes," Statistical Papers, Springer, vol. 65(5), pages 2937-2972, July.
    7. Zhang, Xianyang, 2016. "White noise testing and model diagnostic checking for functional time series," Journal of Econometrics, Elsevier, vol. 194(1), pages 76-95.
    8. Lee, Sangyeol & Meintanis, Simos G. & Pretorius, Charl, 2022. "Monitoring procedures for strict stationarity based on the multivariate characteristic function," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    9. Horváth, Lajos & Liu, Zhenya & Rice, Gregory & Wang, Shixuan, 2020. "A functional time series analysis of forward curves derived from commodity futures," International Journal of Forecasting, Elsevier, vol. 36(2), pages 646-665.
    10. Mestre, Guillermo & Portela, José & Rice, Gregory & Muñoz San Roque, Antonio & Alonso, Estrella, 2021. "Functional time series model identification and diagnosis by means of auto- and partial autocorrelation analysis," Computational Statistics & Data Analysis, Elsevier, vol. 155(C).
    11. Chen, Feifei & Meintanis, Simos G. & Zhu, Lixing, 2019. "On some characterizations and multidimensional criteria for testing homogeneity, symmetry and independence," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 125-144.
    12. Gregory Rice & Tony Wirjanto & Yuqian Zhao, 2020. "Tests for conditional heteroscedasticity of functional data," Journal of Time Series Analysis, Wiley Blackwell, vol. 41(6), pages 733-758, November.
    13. Horváth, Lajos & Rice, Gregory, 2015. "Testing for independence between functional time series," Journal of Econometrics, Elsevier, vol. 189(2), pages 371-382.
    14. Horváth, Lajos & Rice, Gregory & Zhao, Yuqian, 2022. "Change point analysis of covariance functions: A weighted cumulative sum approach," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    15. Oleksandr Gromenko & Piotr Kokoszka & Matthew Reimherr, 2017. "Detection of change in the spatiotemporal mean function," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(1), pages 29-50, January.
    16. Chen, Yichao & Pun, Chi Seng, 2019. "A bootstrap-based KPSS test for functional time series," Journal of Multivariate Analysis, Elsevier, vol. 174(C).
    17. M. D. Jiménez-Gamero & J. L. Moreno-Rebollo & J. A. Mayor-Gallego, 2018. "On the estimation of the characteristic function in finite populations with applications," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(1), pages 95-121, March.
    18. Kokoszka, Piotr & Reimherr, Matthew & Wölfing, Nikolas, 2016. "A randomness test for functional panels," Journal of Multivariate Analysis, Elsevier, vol. 151(C), pages 37-53.
    19. Zdeněk Hlávka & Marie Hušková & Simos G. Meintanis, 2020. "Change-point methods for multivariate time-series: paired vectorial observations," Statistical Papers, Springer, vol. 61(4), pages 1351-1383, August.
    20. Aneiros, Germán & Cao, Ricardo & Fraiman, Ricardo & Genest, Christian & Vieu, Philippe, 2019. "Recent advances in functional data analysis and high-dimensional statistics," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 3-9.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:189:y:2022:i:c:s0047259x21001512. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.