IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/19995.html
   My bibliography  Save this paper

Nonzero-sum Stochastic Games

Author

Listed:
  • Nowak, Andrzej S.
  • Szajowski, Krzysztof

Abstract

This paper treats of stochastic games. We focus on nonzero-sum games and provide a detailed survey of selected recent results. In Section 1, we consider stochastic Markov games. A correlation of strategies of the players, involving ``public signals'', is described, and a correlated equilibrium theorem proved recently by Nowak and Raghavan for discounted stochastic games with general state space is presented. We also report an extension of this result to a class of undiscounted stochastic games, satisfying some uniform ergodicity condition. Stopping games are related to stochastic Markov games. In Section 2, we describe a version of Dynkin's game related to observation of a Markov process with random assignment mechanism of states to the players. Some recent contributions of the second author in this area are reported. The paper also contains a brief overview of the theory of nonzero-sum stochastic games and stopping games which is very far from being complete.

Suggested Citation

  • Nowak, Andrzej S. & Szajowski, Krzysztof, 1998. "Nonzero-sum Stochastic Games," MPRA Paper 19995, University Library of Munich, Germany, revised 1999.
  • Handle: RePEc:pra:mprapa:19995
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/19995/1/MPRA_paper_19995.pdf
    File Function: original version
    Download Restriction: no

    References listed on IDEAS

    as
    1. Mertens, J.-F. & Parthasarathy, T., 1987. "Equilibria for discounted stochastic games," CORE Discussion Papers 1987050, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    2. Vrieze, O J & Thuijsman, F, 1989. "On Equilibria in Repeated Games with Absorbing States," International Journal of Game Theory, Springer;Game Theory Society, vol. 18(3), pages 293-310.
    3. Ioannis Karatzas & Martin Shubik & William D. Sudderth, 1992. "Construction of Stationary Markov Equilibria in a Strategic Market Game," Cowles Foundation Discussion Papers 1033, Cowles Foundation for Research in Economics, Yale University.
    4. Nowak Andrzej S., 1994. "Zero-Sum Average Payoff Stochastic Games with General State Space," Games and Economic Behavior, Elsevier, vol. 7(2), pages 221-232, September.
    5. Forges, Francoise M, 1986. "An Approach to Communication Equilibria," Econometrica, Econometric Society, vol. 54(6), pages 1375-1385, November.
    6. Dutta, P.K., 1991. "What Do Discounted Optima Converge To? A Theory of Discount Rate Asymptotics in Economic Models," RCER Working Papers 264, University of Rochester - Center for Economic Research (RCER).
    7. Yasuda, M., 1985. "On a randomized strategy in Neveu's stopping problem," Stochastic Processes and their Applications, Elsevier, vol. 21(1), pages 159-166, December.
    8. A. S. Nowak & T. E. S. Raghavan, 1992. "Existence of Stationary Correlated Equilibria with Symmetric Information for Discounted Stochastic Games," Mathematics of Operations Research, INFORMS, vol. 17(3), pages 519-526, August.
    9. Christopher Harris, 1991. "The Existence of Subgame-Perfect Equilibrium in Games with Simultaneous Moves," Working papers 570, Massachusetts Institute of Technology (MIT), Department of Economics.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Janusz Matkowski & Andrzej Nowak, 2011. "On discounted dynamic programming with unbounded returns," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 46(3), pages 455-474, April.
    2. Page, Frank, 2016. "Stationary Markov equilibria for approximable discounted stochastic games," LSE Research Online Documents on Economics 67808, London School of Economics and Political Science, LSE Library.
    3. Anna Jaśkiewicz & Andrzej Nowak, 2011. "Stochastic Games with Unbounded Payoffs: Applications to Robust Control in Economics," Dynamic Games and Applications, Springer, vol. 1(2), pages 253-279, June.
    4. Page Jr., Frank H., 1998. "Existence of optimal auctions in general environments," Journal of Mathematical Economics, Elsevier, vol. 29(4), pages 389-418, May.
    5. Eilon Solan & Nicolas Vieille, 2000. "Uniform Value in Recursive Games," Discussion Papers 1293, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
    6. Szajowski, Krzysztof, 2007. "A game version of the Cowan-Zabczyk-Bruss' problem," Statistics & Probability Letters, Elsevier, vol. 77(17), pages 1683-1689, November.
    7. Yuri Kifer, 2012. "Dynkin Games and Israeli Options," Papers 1209.1791, arXiv.org.
    8. Shmaya, Eran & Solan, Eilon, 2004. "Zero-sum dynamic games and a stochastic variation of Ramsey's theorem," Stochastic Processes and their Applications, Elsevier, vol. 112(2), pages 319-329, August.
    9. Gong, Rui & Page, Frank & Wooders, Myrna, 2015. "Endogenous correlated network dynamics," LSE Research Online Documents on Economics 65098, London School of Economics and Political Science, LSE Library.
    10. Anna Krasnosielska-Kobos & Elżbieta Ferenstein, 2013. "Construction of Nash Equilibrium in a Game Version of Elfving’s Multiple Stopping Problem," Dynamic Games and Applications, Springer, vol. 3(2), pages 220-235, June.
    11. Mabel M. TIDBALL & Eitan ALTMAN, 1994. "Approximations In Dynamic Zero-Sum Games," Game Theory and Information 9401001, University Library of Munich, Germany.
    12. Łukasz Balbus & Kevin Reffett & Łukasz Woźny, 2013. "Markov Stationary Equilibria in Stochastic Supermodular Games with Imperfect Private and Public Information," Dynamic Games and Applications, Springer, vol. 3(2), pages 187-206, June.
    13. Sylvain Sorin & Guillaume Vigeral, 2016. "Operator approach to values of stochastic games with varying stage duration," International Journal of Game Theory, Springer;Game Theory Society, vol. 45(1), pages 389-410, March.
    14. Page, F H, Jr, 1991. "Optimal Contract Mechanisms for Principal-Agent Problems with Moral Hazard and Adverse Selection," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 1(4), pages 323-338, October.
    15. repec:spr:compst:v:66:y:2007:i:3:p:531-544 is not listed on IDEAS
    16. Said Hamadène & Mohammed Hassani, 2014. "The multi-player nonzero-sum Dynkin game in discrete time," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 79(2), pages 179-194, April.
    17. P. Herings & Ronald Peeters, 2010. "Homotopy methods to compute equilibria in game theory," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 42(1), pages 119-156, January.
    18. Yehuda (John) Levy, 2012. "A Discounted Stochastic Game with No Stationary Nash Equilibrium," Discussion Paper Series dp596r, The Federmann Center for the Study of Rationality, the Hebrew University, Jerusalem, revised May 2012.
    19. Elżbieta Ferenstein, 2007. "Randomized stopping games and Markov market games," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 66(3), pages 531-544, December.
    20. Anna Krasnosielska-Kobos, 2016. "Construction of Nash equilibrium based on multiple stopping problem in multi-person game," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 83(1), pages 53-70, February.
    21. Page Jr., F.H., 1994. "Optimal Auction Design with Risk Aversion and Correlated Information," Discussion Paper 1994-109, Tilburg University, Center for Economic Research.

    More about this item

    Keywords

    average payoff stochastic games; correlated stationary equilibria; nonzero-sum games; stopping time; stopping games;

    JEL classification:

    • C6 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling
    • C44 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Operations Research; Statistical Decision Theory
    • C7 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory
    • C73 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Stochastic and Dynamic Games; Evolutionary Games
    • C72 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Noncooperative Games

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:19995. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Joachim Winter). General contact details of provider: http://edirc.repec.org/data/vfmunde.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.