IDEAS home Printed from
MyIDEAS: Login to save this paper or follow this series

A selection of maximal elements under non-transitive indifferences

  • Alcantud, José Carlos R.
  • Bosi, Gianni
  • Zuanon, Magalì

In this work we are concerned with maximality issues under intransitivity of the indifference. Our approach relies on the analysis of "undominated maximals" (cf., Peris and Subiza, J Math Psychology 2002). Provided that an agent's binary relation is acyclic, this is a selection of its maximal elements that can always be done when the set of alternatives is finite. In the case of semiorders, proceeding in this way is the same as using Luce's selected maximals. We put forward a sufficient condition for the existence of undominated maximals for interval orders without any cardinality restriction. Its application to certain type of continuous semiorders is very intuitive and accommodates the well-known "sugar example" by Luce.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
File Function: original version
Download Restriction: no

Paper provided by University Library of Munich, Germany in its series MPRA Paper with number 16601.

in new window

Date of creation: 04 Aug 2009
Date of revision:
Handle: RePEc:pra:mprapa:16601
Contact details of provider: Postal: Schackstr. 4, D-80539 Munich, Germany
Phone: +49-(0)89-2180-2219
Fax: +49-(0)89-2180-3900
Web page:

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Josep Enric Peris Ferrando & Begoña Subiza Martínez, 1997. "Choosing among maximals," Working Papers. Serie AD 1997-19, Instituto Valenciano de Investigaciones Económicas, S.A. (Ivie).
  2. Bridges, Douglas S., 1985. "Representing interval orders by a single real-valued function," Journal of Economic Theory, Elsevier, vol. 36(1), pages 149-155, June.
  3. J.C. R. Alcantud, 2002. "Characterization of the existence of maximal elements of acyclic relations," Economic Theory, Springer, vol. 19(2), pages 407-416.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:16601. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Ekkehart Schlicht)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.