IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this paper

A local dynamic conditional correlation model

  • Feng, Yuanhua

This paper introduces the idea that the variances or correlations in financial returns may all change conditionally and slowly over time. A multi-step local dynamic conditional correlation model is proposed for simultaneously modelling these components. In particular, the local and conditional correlations are jointly estimated by multivariate kernel regression. A multivariate k-NN method with variable bandwidths is developed to solve the curse of dimension problem. Asymptotic properties of the estimators are discussed in detail. Practical performance of the model is illustrated by applications to foreign exchange rates.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
File Function: original version
Download Restriction: no

Paper provided by University Library of Munich, Germany in its series MPRA Paper with number 1592.

in new window

Date of creation: 2006
Date of revision:
Handle: RePEc:pra:mprapa:1592
Contact details of provider: Postal:
Ludwigstraße 33, D-80539 Munich, Germany

Phone: +49-(0)89-2180-2459
Fax: +49-(0)89-2180-992459
Web page:

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Beran, Jan & Feng, Yuanhua, 2002. "SEMIFAR models--a semiparametric approach to modelling trends, long-range dependence and nonstationarity," Computational Statistics & Data Analysis, Elsevier, vol. 40(2), pages 393-419, August.
  2. Engle, Robert F & Sheppard, Kevin K, 2001. "Theoretical and Empirical Properties of Dynamic Conditional Correlation Multivariate GARCH," University of California at San Diego, Economics Working Paper Series qt5s2218dp, Department of Economics, UC San Diego.
  3. Y. K. Tse & Albert K. C. Tsui, 2000. "A Multivariate GARCH Model with Time-Varying correlations," Econometrics 0004010, EconWPA.
  4. Jianqing Fan & Qiwei Yao, 1998. "Efficient estimation of conditional variance functions in stochastic regression," LSE Research Online Documents on Economics 6635, London School of Economics and Political Science, LSE Library.
  5. Shiqing Ling & Michael McAleer, 2001. "Necessary and Sufficient Moment Conditions for the GARCH(r,s) and Asymmetric Power GARCH(r,s) Models," ISER Discussion Paper 0534, Institute of Social and Economic Research, Osaka University.
  6. Denis Pelletier, 2004. "Regime Switching for Dynamic Correlations," Econometric Society 2004 North American Summer Meetings 230, Econometric Society.
  7. Wolfgang HÄRDLE & A. TSYBAKOV & L. YANG, 1996. "Nonparametric Vector Autoregression," SFB 373 Discussion Papers 1996,61, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
  8. Annastiina Silvennoinen & Timo Teräsvirta, 2005. "Multivariate Autoregressive Conditional Heteroskedasticity with Smooth Transitions in Conditional Correlations," Research Paper Series 168, Quantitative Finance Research Centre, University of Technology, Sydney.
  9. Bollerslev, Tim & Chou, Ray Y. & Kroner, Kenneth F., 1992. "ARCH modeling in finance : A review of the theory and empirical evidence," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 5-59.
  10. Engle, Robert, 2002. "Dynamic Conditional Correlation: A Simple Class of Multivariate Generalized Autoregressive Conditional Heteroskedasticity Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 339-50, July.
  11. BAUWENS, Luc & LAURENT, Sébastien & ROMBOUTS, Jeroen, 2003. "Multivariate GARCH models: a survey," CORE Discussion Papers 2003031, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  12. Engle, Robert, 2001. "Financial econometrics - A new discipline with new methods," Journal of Econometrics, Elsevier, vol. 100(1), pages 53-56, January.
  13. Tim Bollerslev, 1986. "Generalized autoregressive conditional heteroskedasticity," EERI Research Paper Series EERI RP 1986/01, Economics and Econometrics Research Institute (EERI), Brussels.
  14. Hafner, C.M. & Franses, Ph.H.B.F., 2003. "A generalized dynamic conditional correlation model for many asset returns," Econometric Institute Research Papers EI 2003-18, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
  15. Hafner, C.M. & van Dijk, D.J.C. & Franses, Ph.H.B.F., 2005. "Semi-Parametric Modelling of Correlation Dynamics," Econometric Institute Research Papers EI 2005-26, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
  16. Brooks, C. & Henry, O.T., 2000. "The Impact of News on Measures of Undiversifiable Risk: Evidence from the UK Stock Market," Department of Economics - Working Papers Series 733, The University of Melbourne.
  17. Yuanhua Feng, 2002. "Simultaneously Modelling Conditional Heteroskedasticity and Scale Change," CoFE Discussion Paper 02-12, Center of Finance and Econometrics, University of Konstanz.
  18. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
  19. Bollerslev, Tim & Engle, Robert F & Wooldridge, Jeffrey M, 1988. "A Capital Asset Pricing Model with Time-Varying Covariances," Journal of Political Economy, University of Chicago Press, vol. 96(1), pages 116-31, February.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:1592. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Joachim Winter)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.