IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/1592.html
   My bibliography  Save this paper

A local dynamic conditional correlation model

Author

Listed:
  • Feng, Yuanhua

Abstract

This paper introduces the idea that the variances or correlations in financial returns may all change conditionally and slowly over time. A multi-step local dynamic conditional correlation model is proposed for simultaneously modelling these components. In particular, the local and conditional correlations are jointly estimated by multivariate kernel regression. A multivariate k-NN method with variable bandwidths is developed to solve the curse of dimension problem. Asymptotic properties of the estimators are discussed in detail. Practical performance of the model is illustrated by applications to foreign exchange rates.

Suggested Citation

  • Feng, Yuanhua, 2006. "A local dynamic conditional correlation model," MPRA Paper 1592, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:1592
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/1592/1/MPRA_paper_1592.pdf
    File Function: original version
    Download Restriction: no

    References listed on IDEAS

    as
    1. Y.K. Tse & Albert K.C. Tsui, 2000. "A Multivariate GARCH Model with Time-Varying Correlations," Econometrics 0004007, EconWPA.
    2. Ling, Shiqing & McAleer, Michael, 2002. "NECESSARY AND SUFFICIENT MOMENT CONDITIONS FOR THE GARCH(r,s) AND ASYMMETRIC POWER GARCH(r,s) MODELS," Econometric Theory, Cambridge University Press, vol. 18(03), pages 722-729, June.
    3. Hafner, C.M. & van Dijk, D.J.C. & Franses, Ph.H.B.F., 2005. "Semi-Parametric Modelling of Correlation Dynamics," Econometric Institute Research Papers EI 2005-26, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    4. Sébastien Laurent & Luc Bauwens & Jeroen V. K. Rombouts, 2006. "Multivariate GARCH models: a survey," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(1), pages 79-109.
    5. Pelletier, Denis, 2006. "Regime switching for dynamic correlations," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 445-473.
    6. Brooks, Chris & Henry, Olan T, 2002. " The Impact of News on Measures of Undiversifiable Risk: Evidence from the UK Stock Market," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 64(5), pages 487-507, December.
    7. Engle, Robert F & Sheppard, Kevin K, 2001. "Theoretical and Empirical Properties of Dynamic Conditional Correlation Multivariate GARCH," University of California at San Diego, Economics Working Paper Series qt5s2218dp, Department of Economics, UC San Diego.
    8. Fan, Jianqing & Yao, Qiwei, 1998. "Efficient estimation of conditional variance functions in stochastic regression," LSE Research Online Documents on Economics 6635, London School of Economics and Political Science, LSE Library.
    9. Engle, Robert, 2002. "Dynamic Conditional Correlation: A Simple Class of Multivariate Generalized Autoregressive Conditional Heteroskedasticity Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 339-350, July.
    10. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    11. Bollerslev, Tim & Engle, Robert F & Wooldridge, Jeffrey M, 1988. "A Capital Asset Pricing Model with Time-Varying Covariances," Journal of Political Economy, University of Chicago Press, vol. 96(1), pages 116-131, February.
    12. Annastiina Silvennoinen & Timo Teräsvirta, 2005. "Multivariate Autoregressive Conditional Heteroskedasticity with Smooth Transitions in Conditional Correlations," Research Paper Series 168, Quantitative Finance Research Centre, University of Technology, Sydney.
    13. Beran, Jan & Feng, Yuanhua, 2002. "SEMIFAR models--a semiparametric approach to modelling trends, long-range dependence and nonstationarity," Computational Statistics & Data Analysis, Elsevier, vol. 40(2), pages 393-419, August.
    14. Feng, Yuanhua, 2004. "Simultaneously Modeling Conditional Heteroskedasticity And Scale Change," Econometric Theory, Cambridge University Press, vol. 20(03), pages 563-596, June.
    15. Engle, Robert, 2001. "Financial econometrics - A new discipline with new methods," Journal of Econometrics, Elsevier, vol. 100(1), pages 53-56, January.
    16. Bollerslev, Tim & Chou, Ray Y. & Kroner, Kenneth F., 1992. "ARCH modeling in finance : A review of the theory and empirical evidence," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 5-59.
    17. Hafner, C.M. & Franses, Ph.H.B.F., 2003. "A generalized dynamic conditional correlation model for many asset returns," Econometric Institute Research Papers EI 2003-18, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    18. Wolfgang HÄRDLE & A. TSYBAKOV & L. YANG, 1996. "Nonparametric Vector Autoregression," SFB 373 Discussion Papers 1996,61, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    19. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Matteo Barigozzi & Brownlees Christian & Gallo Giampiero & David Veredas, "undated". "Disentangling systematic and idiosyncratic risks for large panels of assets," ULB Institutional Repository 2013/136237, ULB -- Universite Libre de Bruxelles.
    2. Colacito, Riccardo & Engle, Robert F. & Ghysels, Eric, 2011. "A component model for dynamic correlations," Journal of Econometrics, Elsevier, vol. 164(1), pages 45-59, September.
    3. Barigozzi, Matteo & Brownlees, Christian & Gallo, Giampiero M. & Veredas, David, 2014. "Disentangling systematic and idiosyncratic dynamics in panels of volatility measures," Journal of Econometrics, Elsevier, vol. 182(2), pages 364-384.
    4. Vargas, Gregorio A., 2008. "What Drives the Dynamic Conditional Correlation of Foreign Exchange and Equity Returns?," MPRA Paper 7174, University Library of Munich, Germany.
    5. Philippe Charlot & Vêlayoudom Marimoutou, 2008. "Hierarchical hidden Markov structure for dynamic correlations: the hierarchical RSDC model," Working Papers halshs-00285866, HAL.
    6. Nadine McCloud & Yongmiao Hong, 2011. "Testing The Structure Of Conditional Correlations In Multivariate Garch Models: A Generalized Cross‐Spectrum Approach," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 52(4), pages 991-1037, November.
    7. repec:wyi:journl:002141 is not listed on IDEAS

    More about this item

    Keywords

    Local and conditional correlations; multivariate nonparametric ARCH; multivariate kernel regression; multivariate k-NN method;

    JEL classification:

    • G0 - Financial Economics - - General
    • G1 - Financial Economics - - General Financial Markets
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:1592. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Joachim Winter) or (Rebekah McClure). General contact details of provider: http://edirc.repec.org/data/vfmunde.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.