IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/10859.html
   My bibliography  Save this paper

Direct and iterated multistep AR methods for difference stationary processes

Author

Listed:
  • Proietti, Tommaso

Abstract

The paper focuses on the comparison of the direct and iterated AR predictors when Xt is a difference stationary process. In particular, it provides some useful results for comparing the efficiency of the two predictors and for extracting the trend from macroeconomic time series using the two methods. The main results are based on an encompassing representation for the two predictors which enables to derive their properties quite easily under a maintained model. The paper provides an analytic expression for the mean square forecast error of the two predictors and derives useful recursive formulae for computing the direct and iterated coefficients. From the empirical standpoint, we propose estimators of the AR coefficients based on the tapered Yule-Walker estimates; we also provide a test of equal forecast accuracy which is very simple to implement and whose critical values can be obtained with the bootstrap method. Since multistep prediction is tightly bound up with the estimation of the long run component in a time series, we turn to the role of the direct method for trend estimation and derive the corresponding multistep Beveridge-Nelson decomposition.

Suggested Citation

  • Proietti, Tommaso, 2008. "Direct and iterated multistep AR methods for difference stationary processes," MPRA Paper 10859, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:10859
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/10859/1/MPRA_paper_10859.pdf
    File Function: original version
    Download Restriction: no

    File URL: https://mpra.ub.uni-muenchen.de/15343/1/MPRA_paper_15343.pdf
    File Function: revised version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Marcellino, Massimiliano & Stock, James H. & Watson, Mark W., 2006. "A comparison of direct and iterated multistep AR methods for forecasting macroeconomic time series," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 499-526.
    2. Ing, Ching-Kang, 2003. "Multistep Prediction In Autoregressive Processes," Econometric Theory, Cambridge University Press, vol. 19(2), pages 254-279, April.
    3. Guillaume Chevillon, 2007. "Direct Multi‐Step Estimation And Forecasting," Journal of Economic Surveys, Wiley Blackwell, vol. 21(4), pages 746-785, September.
    4. Weiss, Andrew A., 1991. "Multi-step estimation and forecasting in dynamic models," Journal of Econometrics, Elsevier, vol. 48(1-2), pages 135-149.
    5. J. Haywood & G. Tunnicliffe Wilson, 1997. "Fitting Time Series Models by Minimizing Multistep‐ahead Errors: a Frequency Domain Approach," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 59(1), pages 237-254.
    6. Clements, Michael P & Hendry, David F, 1996. "Multi-step Estimation for Forecasting," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 58(4), pages 657-684, November.
    7. James H. Stock & Mark W. Watson, 2007. "Why Has U.S. Inflation Become Harder to Forecast?," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(s1), pages 3-33, February.
    8. Granger, C. W. J. & Newbold, Paul, 1986. "Forecasting Economic Time Series," Elsevier Monographs, Elsevier, edition 2, number 9780122951831 edited by Shell, Karl.
    9. Zhou, YanYan & Roy, Anindya, 2006. "Effect of tapering on accuracy of forecasts made with stable estimators of vector autoregressive processes," International Journal of Forecasting, Elsevier, vol. 22(1), pages 169-180.
    10. Brockwell, P. J. & Dahlhaus, R., 2004. "Generalized Levinson-Durbin and Burg algorithms," Journal of Econometrics, Elsevier, vol. 118(1-2), pages 129-149.
    11. Peter M Robinson & Carlos Velasco, 2000. "Whittle Pseudo-Maximum Likelihood Estimation for Nonstationary Time Series - (Now published in Journal of the American Statistical Association, 95, (2000), pp.1229-1243.)," STICERD - Econometrics Paper Series 391, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    12. Clive W. J. Granger & Yongil Jeon, 2006. "Dynamics of Model Overfitting Measured in terms of Autoregressive Roots," Journal of Time Series Analysis, Wiley Blackwell, vol. 27(3), pages 347-365, May.
    13. James H. Stock & Mark W. Watson, 2007. "Erratum to "Why Has U.S. Inflation Become Harder to Forecast?"," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(7), pages 1849-1849, October.
    14. Proietti, Tommaso & Harvey, Andrew, 2000. "A Beveridge-Nelson smoother," Economics Letters, Elsevier, vol. 67(2), pages 139-146, May.
    15. Pascal Bondon, 2001. "Recursive Relations for Multistep Prediction of a Stationary Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 22(4), pages 399-410, July.
    16. R. Bhansali, 1996. "Asymptotically efficient autoregressive model selection for multistep prediction," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 48(3), pages 577-602, September.
    17. Robinson, Peter M. & Velasco, Carlos, 2000. "Whittle pseudo-maximum likelihood estimation for nonstationary time series," LSE Research Online Documents on Economics 2273, London School of Economics and Political Science, LSE Library.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Braione, Manuela, 2016. "A time-varying long run HEAVY model," Statistics & Probability Letters, Elsevier, vol. 119(C), pages 36-44.
    2. Chevillon, Guillaume, 2016. "Multistep forecasting in the presence of location shifts," International Journal of Forecasting, Elsevier, vol. 32(1), pages 121-137.
    3. Chevillon, Guillaume, 2009. "Multi-step forecasting in emerging economies: An investigation of the South African GDP," International Journal of Forecasting, Elsevier, vol. 25(3), pages 602-628, July.
    4. McElroy, Tucker & Wildi, Marc, 2013. "Multi-step-ahead estimation of time series models," International Journal of Forecasting, Elsevier, vol. 29(3), pages 378-394.
    5. Pablo M. Pincheira & Carlos A. Medel, 2015. "Forecasting Inflation with a Simple and Accurate Benchmark: The Case of the US and a Set of Inflation Targeting Countries," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 65(1), pages 2-29, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tommaso Proietti, 2016. "The Multistep Beveridge--Nelson Decomposition," Econometric Reviews, Taylor & Francis Journals, vol. 35(3), pages 373-395, March.
    2. Chevillon, Guillaume, 2016. "Multistep forecasting in the presence of location shifts," International Journal of Forecasting, Elsevier, vol. 32(1), pages 121-137.
    3. Chevillon, Guillaume, 2009. "Multi-step forecasting in emerging economies: An investigation of the South African GDP," International Journal of Forecasting, Elsevier, vol. 25(3), pages 602-628, July.
    4. Chevillon, Guillaume & Hendry, David F., 2005. "Non-parametric direct multi-step estimation for forecasting economic processes," International Journal of Forecasting, Elsevier, vol. 21(2), pages 201-218.
    5. Guillaume Chevillon, 2007. "Direct Multi‐Step Estimation And Forecasting," Journal of Economic Surveys, Wiley Blackwell, vol. 21(4), pages 746-785, September.
    6. Eliana González Molano & Luis Fernando Melo Velnadia & Anderson Grajales Olarte, 2007. "Pronósticos directos de la inflación colombiana," Borradores de Economia 4247, Banco de la Republica.
    7. Alfred A. Haug & Christie Smith, 2012. "Local Linear Impulse Responses for a Small Open Economy," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 74(3), pages 470-492, June.
    8. Jari Hännikäinen, 2014. "Multi-step forecasting in the presence of breaks," Working Papers 1494, Tampere University, Faculty of Management and Business, Economics.
    9. Guillaume Chevillon, 2006. "Multi-step Forecasting in Unstable Economies: Robustness Issues in the Presence of Location Shifts," Economics Series Working Papers 257, University of Oxford, Department of Economics.
    10. Marcellino, Massimiliano & Stock, James H. & Watson, Mark W., 2006. "A comparison of direct and iterated multistep AR methods for forecasting macroeconomic time series," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 499-526.
    11. Chevillon, Guillaume, 2017. "Robustness of Multistep Forecasts and Predictive Regressions at Intermediate and Long Horizons," ESSEC Working Papers WP1710, ESSEC Research Center, ESSEC Business School.
    12. Muellbauer, John & Aron, Janine & Sebudde, Rachel, 2015. "Inflation forecasting models for Uganda: is mobile money relevant?," CEPR Discussion Papers 10739, C.E.P.R. Discussion Papers.
    13. Hansen, Peter Reinhard & Dumitrescu, Elena-Ivona, 2022. "How should parameter estimation be tailored to the objective?," Journal of Econometrics, Elsevier, vol. 230(2), pages 535-558.
    14. Philip Hans Franses & Rianne Legerstee, 2010. "A Unifying View On Multi‐Step Forecasting Using An Autoregression," Journal of Economic Surveys, Wiley Blackwell, vol. 24(3), pages 389-401, July.
    15. John Haywood & Granville Tunnicliffe Wilson, 2009. "A test for improved multi‐step forecasting," Journal of Time Series Analysis, Wiley Blackwell, vol. 30(6), pages 682-707, November.
    16. Roberto Duncan & Enrique Martínez‐García, 2023. "Forecasting inflation in open economies: What can a NOEM model do?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(3), pages 481-513, April.
    17. Hitesh Doshi & Kris Jacobs & Rui Liu, 2021. "Information in the Term Structure: A Forecasting Perspective," Management Science, INFORMS, vol. 67(8), pages 5255-5277, August.
    18. Aron, Janine & Muellbauer, John, 2012. "Improving forecasting in an emerging economy, South Africa: Changing trends, long run restrictions and disaggregation," International Journal of Forecasting, Elsevier, vol. 28(2), pages 456-476.
    19. Michael W. McCracken & Joseph T. McGillicuddy, 2019. "An empirical investigation of direct and iterated multistep conditional forecasts," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 34(2), pages 181-204, March.
    20. Horváth, Roman & Komárek, Luboš & Rozsypal, Filip, 2011. "Does money help predict inflation? An empirical assessment for Central Europe," Economic Systems, Elsevier, vol. 35(4), pages 523-536.

    More about this item

    Keywords

    Beveridge-Nelson decomposition; Multistep estimation; Tapered Yule-Walker estimates; Forecast combination;
    All these keywords.

    JEL classification:

    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • E31 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Price Level; Inflation; Deflation
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:10859. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.