IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v39y2024i3d10.1007_s00180-023-01377-x.html
   My bibliography  Save this article

Multi-step estimators and shrinkage effect in time series models

Author

Listed:
  • Ivan Svetunkov

    (Lancaster University Management School
    Lancaster University Management School)

  • Nikolaos Kourentzes

    (University of Skövde)

  • Rebecca Killick

    (Lancaster University)

Abstract

Many modern statistical models are used for both insight and prediction when applied to data. When models are used for prediction one should optimise parameters through a prediction error loss function. Estimation methods based on multiple steps ahead forecast errors have been shown to lead to more robust and less biased estimates of parameters. However, a plausible explanation of why this is the case is lacking. In this paper, we provide this explanation, showing that the main benefit of these estimators is in a shrinkage effect, happening in univariate models naturally. However, this can introduce a series of limitations, due to overly aggressive shrinkage. We discuss the predictive likelihoods related to the multistep estimators and demonstrate what their usage implies to time series models. To overcome the limitations of the existing multiple steps estimators, we propose the Geometric Trace Mean Squared Error, demonstrating its advantages. We conduct a simulation experiment showing how the estimators behave with different sample sizes and forecast horizons. Finally, we carry out an empirical evaluation on real data, demonstrating the performance and advantages of the estimators. Given that the underlying process to be modelled is often unknown, we conclude that the shrinkage achieved by the GTMSE is a competitive alternative to conventional ones.

Suggested Citation

  • Ivan Svetunkov & Nikolaos Kourentzes & Rebecca Killick, 2024. "Multi-step estimators and shrinkage effect in time series models," Computational Statistics, Springer, vol. 39(3), pages 1203-1239, May.
  • Handle: RePEc:spr:compst:v:39:y:2024:i:3:d:10.1007_s00180-023-01377-x
    DOI: 10.1007/s00180-023-01377-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00180-023-01377-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00180-023-01377-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Weiss, Andrew A., 1991. "Multi-step estimation and forecasting in dynamic models," Journal of Econometrics, Elsevier, vol. 48(1-2), pages 135-149.
    2. Proietti, Tommaso, 2011. "Direct and iterated multistep AR methods for difference stationary processes," International Journal of Forecasting, Elsevier, vol. 27(2), pages 266-280.
    3. Guillaume Chevillon, 2007. "Direct Multi‐Step Estimation And Forecasting," Journal of Economic Surveys, Wiley Blackwell, vol. 21(4), pages 746-785, September.
    4. Chevillon, Guillaume, 2016. "Multistep forecasting in the presence of location shifts," International Journal of Forecasting, Elsevier, vol. 32(1), pages 121-137.
    5. Òscar Jordà & Massimiliano Marcellino, 2010. "Path forecast evaluation," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(4), pages 635-662.
    6. Chevillon, Guillaume & Hendry, David F., 2005. "Non-parametric direct multi-step estimation for forecasting economic processes," International Journal of Forecasting, Elsevier, vol. 21(2), pages 201-218.
    7. Chevillon, Guillaume, 2009. "Multi-step forecasting in emerging economies: An investigation of the South African GDP," International Journal of Forecasting, Elsevier, vol. 25(3), pages 602-628, July.
    8. Gersch, Will & Kitagawa, Genshiro, 1983. "The Prediction of Time Series with Trends and Seasonalities," Journal of Business & Economic Statistics, American Statistical Association, vol. 1(3), pages 253-264, July.
    9. Taylor, James W., 2008. "An evaluation of methods for very short-term load forecasting using minute-by-minute British data," International Journal of Forecasting, Elsevier, vol. 24(4), pages 645-658.
    10. J. Haywood & G. Tunnicliffe Wilson, 1997. "Fitting Time Series Models by Minimizing Multistep‐ahead Errors: a Frequency Domain Approach," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 59(1), pages 237-254.
    11. McElroy, Tucker & Wildi, Marc, 2013. "Multi-step-ahead estimation of time series models," International Journal of Forecasting, Elsevier, vol. 29(3), pages 378-394.
    12. Marcellino, Massimiliano & Stock, James H. & Watson, Mark W., 2006. "A comparison of direct and iterated multistep AR methods for forecasting macroeconomic time series," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 499-526.
    13. Tucker McElroy, 2015. "When are Direct Multi‐step and Iterative Forecasts Identical?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 34(4), pages 315-336, July.
    14. Saoud, Patrick & Kourentzes, Nikolaos & Boylan, John E., 2022. "Approximations for the Lead Time Variance: a Forecasting and Inventory Evaluation," Omega, Elsevier, vol. 110(C).
    15. Clements,Michael & Hendry,David, 1998. "Forecasting Economic Time Series," Cambridge Books, Cambridge University Press, number 9780521634809, December.
    16. Kolassa, Stephan, 2016. "Evaluating predictive count data distributions in retail sales forecasting," International Journal of Forecasting, Elsevier, vol. 32(3), pages 788-803.
    17. R. Bhansali, 1996. "Asymptotically efficient autoregressive model selection for multistep prediction," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 48(3), pages 577-602, September.
    18. Kang, In-Bong, 2003. "Multi-period forecasting using different models for different horizons: an application to U.S. economic time series data," International Journal of Forecasting, Elsevier, vol. 19(3), pages 387-400.
    19. Andrew Martinez, 2017. "Testing for Differences in Path Forecast Accuracy: Forecast-Error Dynamics Matter," Working Papers (Old Series) 1717, Federal Reserve Bank of Cleveland.
    20. Ing, Ching-Kang, 2003. "Multistep Prediction In Autoregressive Processes," Econometric Theory, Cambridge University Press, vol. 19(2), pages 254-279, April.
    21. Trapero, Juan R. & Cardós, Manuel & Kourentzes, Nikolaos, 2019. "Empirical safety stock estimation based on kernel and GARCH models," Omega, Elsevier, vol. 84(C), pages 199-211.
    22. Nikolaos Kourentzes & Dong Li & Arne K. Strauss, 2019. "Unconstraining methods for revenue management systems under small demand," Journal of Revenue and Pricing Management, Palgrave Macmillan, vol. 18(1), pages 27-41, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chevillon, Guillaume, 2016. "Multistep forecasting in the presence of location shifts," International Journal of Forecasting, Elsevier, vol. 32(1), pages 121-137.
    2. Chevillon, Guillaume, 2009. "Multi-step forecasting in emerging economies: An investigation of the South African GDP," International Journal of Forecasting, Elsevier, vol. 25(3), pages 602-628, July.
    3. Guillaume Chevillon, 2007. "Direct Multi‐Step Estimation And Forecasting," Journal of Economic Surveys, Wiley Blackwell, vol. 21(4), pages 746-785, September.
    4. Eliana González Molano & Luis Fernando Melo Velnadia & Anderson Grajales Olarte, 2007. "Pronósticos directos de la inflación colombiana," Borradores de Economia 4246, Banco de la Republica.
    5. Marcellino, Massimiliano & Stock, James H. & Watson, Mark W., 2006. "A comparison of direct and iterated multistep AR methods for forecasting macroeconomic time series," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 499-526.
    6. Chevillon, Guillaume, 2017. "Robustness of Multistep Forecasts and Predictive Regressions at Intermediate and Long Horizons," ESSEC Working Papers WP1710, ESSEC Research Center, ESSEC Business School.
    7. Chevillon, Guillaume & Hendry, David F., 2005. "Non-parametric direct multi-step estimation for forecasting economic processes," International Journal of Forecasting, Elsevier, vol. 21(2), pages 201-218.
    8. Jari Hännikäinen, 2014. "Multi-step forecasting in the presence of breaks," Working Papers 1494, Tampere University, Faculty of Management and Business, Economics.
    9. Proietti, Tommaso, 2011. "Direct and iterated multistep AR methods for difference stationary processes," International Journal of Forecasting, Elsevier, vol. 27(2), pages 266-280, April.
    10. John Haywood & Granville Tunnicliffe Wilson, 2009. "A test for improved multi‐step forecasting," Journal of Time Series Analysis, Wiley Blackwell, vol. 30(6), pages 682-707, November.
    11. Tommaso Proietti, 2016. "The Multistep Beveridge--Nelson Decomposition," Econometric Reviews, Taylor & Francis Journals, vol. 35(3), pages 373-395, March.
    12. Alfred A. Haug & Christie Smith, 2012. "Local Linear Impulse Responses for a Small Open Economy," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 74(3), pages 470-492, June.
    13. Hitesh Doshi & Kris Jacobs & Rui Liu, 2021. "Information in the Term Structure: A Forecasting Perspective," Management Science, INFORMS, vol. 67(8), pages 5255-5277, August.
    14. Guillaume Chevillon, 2006. "Multi-step Forecasting in Unstable Economies: Robustness Issues in the Presence of Location Shifts," Economics Series Working Papers 257, University of Oxford, Department of Economics.
    15. Oriol Gonzalez-Casasus & Frank Schorfheide, 2025. "Misspecification-Robust Shrinkage and Selection for VAR Forecasts and IRFs," PIER Working Paper Archive 25-003, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    16. Philip Hans Franses & Rianne Legerstee, 2010. "A Unifying View On Multi‐Step Forecasting Using An Autoregression," Journal of Economic Surveys, Wiley Blackwell, vol. 24(3), pages 389-401, July.
    17. Hendry, David F., 2006. "Robustifying forecasts from equilibrium-correction systems," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 399-426.
    18. Hendry, David F. & Hubrich, Kirstin, 2006. "Forecasting economic aggregates by disaggregates," Working Paper Series 589, European Central Bank.
    19. Massimiliano Marcellino & Christian Schumacher, 2010. "Factor MIDAS for Nowcasting and Forecasting with Ragged‐Edge Data: A Model Comparison for German GDP," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 72(4), pages 518-550, August.
    20. Christian Schumacher, 2007. "Forecasting German GDP using alternative factor models based on large datasets," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 26(4), pages 271-302.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:39:y:2024:i:3:d:10.1007_s00180-023-01377-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.