IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-03331109.html

How Should Parameter Estimation Be Tailored to the Objective?

Author

Listed:
  • Elena Ivona Dumitrescu

    (EconomiX - EconomiX - UPN - Université Paris Nanterre - CNRS - Centre National de la Recherche Scientifique)

  • Peter Hansen

Abstract

We study parameter estimation from the sample X, when the objective is to maximize the expected value of a criterion function, Q, for a distinct sample, Y. This is the situation that arises when a model is estimated for the purpose of describing other data than those used for estimation, such as in forecasting problems. A natural candidate for solving maxT∈σ(X)EQ(Y,T) is the innate estimator, θˆ=argmaxθQ(X,θ). While the innate estimator has certain advantages, we show that the asymptotically efficient estimator takes the form θ̃=argmaxθQ̃(X,θ), where Q̃ is defined from a likelihood function in conjunction with Q. The likelihood-based estimator is, however, fragile, as misspecification is harmful in two ways. First, the likelihood-based estimator may be inefficient under misspecification. Second, and more importantly, the likelihood approach requires a parameter transformation that depends on the true model, causing an improper mapping to be used under misspecification.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Elena Ivona Dumitrescu & Peter Hansen, 2020. "How Should Parameter Estimation Be Tailored to the Objective?," Post-Print hal-03331109, HAL.
  • Handle: RePEc:hal:journl:hal-03331109
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. is not listed on IDEAS
    2. Oh, Dong Hwan & Patton, Andrew J., 2024. "Better the devil you know: Improved forecasts from imperfect models," Journal of Econometrics, Elsevier, vol. 242(1).
    3. Chao Zhang & Xingyue Pu & Mihai Cucuringu & Xiaowen Dong, 2023. "Graph Neural Networks for Forecasting Multivariate Realized Volatility with Spillover Effects," Papers 2308.01419, arXiv.org.
    4. Zhang, Chao & Pu, Xingyue & Cucuringu, Mihai & Dong, Xiaowen, 2025. "Forecasting realized volatility with spillover effects: Perspectives from graph neural networks," International Journal of Forecasting, Elsevier, vol. 41(1), pages 377-397.
    5. Chen, Yi-Ting & Liu, Chu-An & Su, Jiun-Hua, 2025. "Bregman model averaging for forecast combination," Journal of Econometrics, Elsevier, vol. 251(C).
    6. Chen, Yi-Ting & Liu, Chu-An, 2023. "Model averaging for asymptotically optimal combined forecasts," Journal of Econometrics, Elsevier, vol. 235(2), pages 592-607.
    7. Corradi, Valentina & Fosten, Jack & Gutknecht, Daniel, 2024. "Predictive ability tests with possibly overlapping models," Journal of Econometrics, Elsevier, vol. 241(1).

    More about this item

    Keywords

    ;

    JEL classification:

    • C18 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Methodolical Issues: General
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-03331109. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.