IDEAS home Printed from https://ideas.repec.org/p/pen/papers/15-006.html
   My bibliography  Save this paper

Plausible Cooperation, Fourth Version

Author

Listed:
  • Oliver Compte

    (Paris School of Economics)

  • Andrew Postlewaite

    (Department of Economics, University of Pennsylvania)

Abstract

There is a large repeated games literature illustrating how future interactions provide incentives for cooperation. Much of the earlier literature assumes public monitoring. Departures from public monitoring to private monitoring that incorporate differences in players’ observations may dramatically complicate coordination and the provision of incentives, with the consequence that equilibria with private monitoring often seem unrealistically complex or fragile. We set out a model in which players accomplish cooperation in an intuitively plausible fashion. Players process information via a mental system — a set of psychological states and a transition function between states depending on observations. Players restrict attention to a relatively small set of simple strategies, and consequently, might learn which perform well.

Suggested Citation

  • Oliver Compte & Andrew Postlewaite, 2010. "Plausible Cooperation, Fourth Version," PIER Working Paper Archive 15-006, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania, revised 23 Jan 2015.
  • Handle: RePEc:pen:papers:15-006
    as

    Download full text from publisher

    File URL: https://economics.sas.upenn.edu/sites/default/files/filevault/15-006.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bagwell, Kyle, 1995. "Commitment and observability in games," Games and Economic Behavior, Elsevier, vol. 8(2), pages 271-280.
    2. Christopher Phelan & Andrzej Skrzypacz, 2006. "Private monitoring with infinite histories," Staff Report 383, Federal Reserve Bank of Minneapolis.
    3. Ben-porath, Elchanan, 1990. "The complexity of computing a best response automaton in repeated games with mixed strategies," Games and Economic Behavior, Elsevier, vol. 2(1), pages 1-12, March.
    4. Piccione, Michele & Rubinstein, Ariel, 1997. "On the Interpretation of Decision Problems with Imperfect Recall," Games and Economic Behavior, Elsevier, vol. 20(1), pages 3-24, July.
    5. Compte, Olivier, 2002. "On Sustaining Cooperation without Public Observations," Journal of Economic Theory, Elsevier, vol. 102(1), pages 106-150, January.
    6. Ben-Porath Elchanan, 1993. "Repeated Games with Finite Automata," Journal of Economic Theory, Elsevier, vol. 59(1), pages 17-32, February.
    7. Abreu, Dilip & Pearce, David & Stacchetti, Ennio, 1990. "Toward a Theory of Discounted Repeated Games with Imperfect Monitoring," Econometrica, Econometric Society, vol. 58(5), pages 1041-1063, September.
    8. Abreu, Dilip, 1986. "Extremal equilibria of oligopolistic supergames," Journal of Economic Theory, Elsevier, vol. 39(1), pages 191-225, June.
    9. Gilboa, Itzhak, 1988. "The complexity of computing best-response automata in repeated games," Journal of Economic Theory, Elsevier, vol. 45(2), pages 342-352, August.
    10. Michihiro Kandori & Ichiro Obara, 2007. "Finite State Equilibria in Dynamic Games," 2007 Meeting Papers 253, Society for Economic Dynamics.
    11. Neyman, Abraham, 1985. "Bounded complexity justifies cooperation in the finitely repeated prisoners' dilemma," Economics Letters, Elsevier, vol. 19(3), pages 227-229.
    12. Ely, Jeffrey C. & Valimaki, Juuso, 2002. "A Robust Folk Theorem for the Prisoner's Dilemma," Journal of Economic Theory, Elsevier, vol. 102(1), pages 84-105, January.
    13. Abreu, Dilip, 1988. "On the Theory of Infinitely Repeated Games with Discounting," Econometrica, Econometric Society, vol. 56(2), pages 383-396, March.
    14. Abraham Neyman, 1998. "Finitely Repeated Games with Finite Automata," Mathematics of Operations Research, INFORMS, vol. 23(3), pages 513-552, August.
    15. Kalai, Ehud & Stanford, William, 1988. "Finite Rationality and Interpersonal Complexity in Repeated Games," Econometrica, Econometric Society, vol. 56(2), pages 397-410, March.
    16. Abreu, Dilip & Rubinstein, Ariel, 1988. "The Structure of Nash Equilibrium in Repeated Games with Finite Automata," Econometrica, Econometric Society, vol. 56(6), pages 1259-1281, November.
    17. Piccione, Michele, 2002. "The Repeated Prisoner's Dilemma with Imperfect Private Monitoring," Journal of Economic Theory, Elsevier, vol. 102(1), pages 70-83, January.
    18. Olivier Compte, 1998. "Communication in Repeated Games with Imperfect Private Monitoring," Econometrica, Econometric Society, vol. 66(3), pages 597-626, May.
    19. Olivier Compte & Andrew Postlewaite, 2013. "Belief free equilibria," PIER Working Paper Archive 13-020, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jehiel, Philippe & Samuelson, Larry, 2023. "The analogical foundations of cooperation," Journal of Economic Theory, Elsevier, vol. 208(C).
    2. Lorecchio, Caio & Monte, Daniel, 2023. "Bad reputation with simple rating systems," Games and Economic Behavior, Elsevier, vol. 142(C), pages 150-178.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Olivier Compte & Andrew Postlewaite, 2007. "Effecting Cooperation," PIER Working Paper Archive 09-019, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania, revised 29 May 2009.
    2. Compte, Olivier & Postlewaite, Andrew, 2015. "Plausible cooperation," Games and Economic Behavior, Elsevier, vol. 91(C), pages 45-59.
    3. Andrew Postlewaite & Olivier Compte, 2008. "Repeated Relationships with Limits on Information Processing," PIER Working Paper Archive 08-026, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    4. Hubie Chen, 2013. "Bounded rationality, strategy simplification, and equilibrium," International Journal of Game Theory, Springer;Game Theory Society, vol. 42(3), pages 593-611, August.
    5. Ehud Kalai, 1995. "Games," Discussion Papers 1141, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
    6. Kandori, Michihiro, 2002. "Introduction to Repeated Games with Private Monitoring," Journal of Economic Theory, Elsevier, vol. 102(1), pages 1-15, January.
    7. Renault, Jérôme & Scarsini, Marco & Tomala, Tristan, 2008. "Playing off-line games with bounded rationality," Mathematical Social Sciences, Elsevier, vol. 56(2), pages 207-223, September.
    8. Mailath, George J. & Morris, Stephen, 2002. "Repeated Games with Almost-Public Monitoring," Journal of Economic Theory, Elsevier, vol. 102(1), pages 189-228, January.
    9. Hernández, Penélope & Urbano, Amparo, 2008. "Codification schemes and finite automata," Mathematical Social Sciences, Elsevier, vol. 56(3), pages 395-409, November.
    10. Mailath, George J. & Olszewski, Wojciech, 2011. "Folk theorems with bounded recall under (almost) perfect monitoring," Games and Economic Behavior, Elsevier, vol. 71(1), pages 174-192, January.
    11. Stephan Schosser & Bodo Vogt, 2015. "What automaton model captures decision making? A call for finding a behavioral taxonomy of complexity," FEMM Working Papers 150010, Otto-von-Guericke University Magdeburg, Faculty of Economics and Management.
    12. Ueda, Masahiko, 2023. "Memory-two strategies forming symmetric mutual reinforcement learning equilibrium in repeated prisoners’ dilemma game," Applied Mathematics and Computation, Elsevier, vol. 444(C).
    13. Aumann, Robert J., 1997. "Rationality and Bounded Rationality," Games and Economic Behavior, Elsevier, vol. 21(1-2), pages 2-14, October.
    14. Olivier Gossner & Penélope Hernández & Ron Peretz, 2016. "The complexity of interacting automata," International Journal of Game Theory, Springer;Game Theory Society, vol. 45(1), pages 461-496, March.
    15. Jérôme Renault & Marco Scarsini & Tristan Tomala, 2007. "A Minority Game with Bounded Recall," Mathematics of Operations Research, INFORMS, vol. 32(4), pages 873-889, November.
    16. Burkov, Andriy & Chaib-draa, Brahim, 2015. "Computing equilibria in discounted dynamic games," Applied Mathematics and Computation, Elsevier, vol. 269(C), pages 863-884.
    17. Olivier Gossner & Penélope Hernández, 2003. "On the Complexity of Coordination," Mathematics of Operations Research, INFORMS, vol. 28(1), pages 127-140, February.
    18. David Baron & Ehud Kalai, 1990. "Dividing a Cake by Majority: The Simplest Equilibria," Discussion Papers 919, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
    19. Miyagawa, Eiichi & Miyahara, Yasuyuki & Sekiguchi, Tadashi, 2008. "The folk theorem for repeated games with observation costs," Journal of Economic Theory, Elsevier, vol. 139(1), pages 192-221, March.
    20. Ho, Teck-Hua, 1996. "Finite automata play repeated prisoner's dilemma with information processing costs," Journal of Economic Dynamics and Control, Elsevier, vol. 20(1-3), pages 173-207.

    More about this item

    Keywords

    : repeated games; private monitoring; bounded rationality; cooperation;
    All these keywords.

    JEL classification:

    • D01 - Microeconomics - - General - - - Microeconomic Behavior: Underlying Principles
    • D70 - Microeconomics - - Analysis of Collective Decision-Making - - - General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pen:papers:15-006. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Administrator (email available below). General contact details of provider: https://edirc.repec.org/data/deupaus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.