IDEAS home Printed from https://ideas.repec.org/p/nex/wpaper/urbanaccessacrossglobe.html
   My bibliography  Save this paper

Urban access across the globe: an international comparison of different transport modes

Author

Listed:
  • Hao Wu
  • Paolo Avner
  • Genevieve Boisjoly
  • Carlos K. V. Braga
  • Ahmed El-Geneidy
  • Jie Huang
  • Tamara Kerzhner
  • Brendan Murphy
  • MichaÅ‚ A. Niedzielski
  • Rafael H. M. Pereira
  • John P. Pritchard
  • Anson Stewart
  • Jiaoe Wang
  • David Levinson

    (TransportLab, School of Civil Engineering, University of Sydney)

Abstract

Access (the ease of reaching valued destinations) is underpinned by land use and transport infrastructure. The importance of access in transport, sustainability, and urban economics is increasingly recognized. In particular, access provides a universal unit of measurement to examine cities for the efficiency of transport and land-use systems. This paper examines the relationship between population-weighted access and metropolitan population in global metropolitan areas (cities) using 30-min cumulative access to jobs for 4 different modes of transport; 117 cities from 16 countries and 6 continents are included. Sprawling development with the intensive road network in American cities produces modest automobile access relative to their sizes, but American cities lag behind globally in transit and walking access; Australian and Canadian cities have lower automobile access, but better transit access than American cities; combining compact development with an intensive network produces the highest access in Chinese and European cities for their sizes. Hence density and mobility co-produce better access. This paper finds access to jobs increases with populations sublinearly, so doubling the metropolitan population results in less than double access to jobs. The relationship between population and access characterizes regions, countries, and cities, and significant similarities exist between cities from the same country.

Suggested Citation

  • Hao Wu & Paolo Avner & Genevieve Boisjoly & Carlos K. V. Braga & Ahmed El-Geneidy & Jie Huang & Tamara Kerzhner & Brendan Murphy & MichaÅ‚ A. Niedzielski & Rafael H. M. Pereira & John P. Pritchard & A, 2022. "Urban access across the globe: an international comparison of different transport modes," Working Papers 2021-01, University of Minnesota: Nexus Research Group.
  • Handle: RePEc:nex:wpaper:urbanaccessacrossglobe
    DOI: 10.1038/s42949-021-00020-2
    as

    Download full text from publisher

    File URL: https://dx.doi.org/10.1038/s42949-021-00020-2
    File Function: First version, 2022
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s42949-021-00020-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mohring, Herbert, 1972. "Optimization and Scale Economies in Urban Bus Transportation," American Economic Review, American Economic Association, vol. 62(4), pages 591-604, September.
    2. Hao Wu & David Levinson & Somwrita Sarkar, 2019. "How transit scaling shapes cities," Nature Sustainability, Nature, vol. 2(12), pages 1142-1148, December.
    3. Liv Osland & Gwilym Pryce, 2012. "Housing Prices and Multiple Employment Nodes: Is the Relationship Nonmonotonic?," Housing Studies, Taylor & Francis Journals, vol. 27(8), pages 1182-1208, November.
    4. David Levinson, 2012. "Network Structure and City Size," PLOS ONE, Public Library of Science, vol. 7(1), pages 1-11, January.
    5. Owen, Andrew & Levinson, David M., 2015. "Modeling the commute mode share of transit using continuous accessibility to jobs," Transportation Research Part A: Policy and Practice, Elsevier, vol. 74(C), pages 110-122.
    6. Vickerman, Roger, 2008. "Transit investment and economic development," Research in Transportation Economics, Elsevier, vol. 23(1), pages 107-115, January.
    7. El-Geneidy, Ahmed & Levinson, David & Diab, Ehab & Boisjoly, Genevieve & Verbich, David & Loong, Charis, 2016. "The cost of equity: Assessing transit accessibility and social disparity using total travel cost," Transportation Research Part A: Policy and Practice, Elsevier, vol. 91(C), pages 302-316.
    8. David Levinson & Ajay Kumar, 1994. "The Rational Locator: Why Travel Times Have Remained Stable," Working Papers 199402, University of Minnesota: Nexus Research Group.
    9. David Levinson & Yao Wu, 2005. "The rational locator reexamined: Are travel times still stable?," Transportation, Springer, vol. 32(2), pages 187-202, March.
    10. Jonathan Levine & Joe Grengs & Qingyun Shen & Qing Shen, 2012. "Does Accessibility Require Density or Speed?," Journal of the American Planning Association, Taylor & Francis Journals, vol. 78(2), pages 157-172.
    11. Yao Wu & David Levinson, 2005. "The Rational Locator Reexamined," Working Papers 200503, University of Minnesota: Nexus Research Group.
    12. Rafael Henrique Moraes Pereira & Tim Schwanen, 2013. "Commute Time in Brazil (1992-2009): Differences Between Metropolitan Areas, by Income Levels and Gender," Discussion Papers 1813a, Instituto de Pesquisa Econômica Aplicada - IPEA.
    13. Mokhtarian, Patricia L. & Chen, Cynthia, 2004. "TTB or not TTB, that is the question: a review and analysis of the empirical literature on travel time (and money) budgets," Transportation Research Part A: Policy and Practice, Elsevier, vol. 38(9-10), pages 643-675.
    14. Verbich, David & Badami, Madhav G. & El-Geneidy, Ahmed M., 2017. "Bang for the buck: Toward a rapid assessment of urban public transit from multiple perspectives in North America," Transport Policy, Elsevier, vol. 55(C), pages 51-61.
    15. Karen Mayor & Seán Lyons & David Duffy & Richard S. J. Tol, 2012. "A Hedonic Analysis of the Value of Rail Transport in the Greater Dublin Area," Journal of Transport Economics and Policy, University of Bath, vol. 46(2), pages 239-261, May.
    16. Sybil Derrible & Christopher Kennedy, 2010. "Characterizing metro networks: state, form, and structure," Transportation, Springer, vol. 37(2), pages 275-297, March.
    17. Daniel J. Graham, 2007. "Agglomeration, Productivity and Transport Investment," Journal of Transport Economics and Policy, University of Bath, vol. 41(3), pages 317-343, September.
    18. Itf, 2019. "Benchmarking Accessibility in Cities: Measuring the Impact of Proximity and Transport Performance," International Transport Forum Policy Papers 68, OECD Publishing.
    19. Jara-Díaz, Sergio R. & Videla, Jorge, 1989. "Detection of income effect in mode choice: Theory and application," Transportation Research Part B: Methodological, Elsevier, vol. 23(6), pages 393-400, December.
    20. Gabriel Ahlfeldt, 2011. "If Alonso Was Right: Modeling Accessibility And Explaining The Residential Land Gradient," Journal of Regional Science, Wiley Blackwell, vol. 51(2), pages 318-338, May.
    21. Glaeser, Edward L., 2008. "Cities, Agglomeration, and Spatial Equilibrium," OUP Catalogue, Oxford University Press, number 9780199290444, Decembrie.
    22. Pereira, Rafael H.M., 2019. "Future accessibility impacts of transport policy scenarios: Equity and sensitivity to travel time thresholds for Bus Rapid Transit expansion in Rio de Janeiro," Journal of Transport Geography, Elsevier, vol. 74(C), pages 321-332.
    23. Fransen, Koos & Neutens, Tijs & Farber, Steven & De Maeyer, Philippe & Deruyter, Greet & Witlox, Frank, 2015. "Identifying public transport gaps using time-dependent accessibility levels," Journal of Transport Geography, Elsevier, vol. 48(C), pages 176-187.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. David Levinson & Hao Wu, 2020. "Towards a general theory of access," Working Papers 2022-01, University of Minnesota: Nexus Research Group.
    2. Vale, David S., 2013. "Does commuting time tolerance impede sustainable urban mobility? Analysing the impacts on commuting behaviour as a result of workplace relocation to a mixed-use centre in Lisbon," Journal of Transport Geography, Elsevier, vol. 32(C), pages 38-48.
    3. Hao Wu & David Levinson & Andrew Owen, 2021. "Commute mode share and access to jobs across US metropolitan areas," Environment and Planning B, , vol. 48(4), pages 671-684, May.
    4. Ma, Kang-Rae & Kang, Eun-Taek, 2011. "Time–space convergence and urban decentralisation," Journal of Transport Geography, Elsevier, vol. 19(4), pages 606-614.
    5. Martin P. Brosnan & David Levinson, 2014. "Accessibility and the Allocation of Time: Changes in Travel Behavior 1990-2010," Working Papers 000120, University of Minnesota: Nexus Research Group.
    6. Nir Sharav & Yoram Shiftan, 2021. "Optimal Urban Transit Investment Model and Its Application," Sustainability, MDPI, vol. 13(16), pages 1-29, August.
    7. Rafael Henrique Moraes Pereira & Tim Schwanen, 2013. "Commute Time in Brazil (1992-2009): Differences Between Metropolitan Areas, by Income Levels and Gender," Discussion Papers 1813a, Instituto de Pesquisa Econômica Aplicada - IPEA.
    8. Mohíno, Inmaculada & Ureña, José M. & Solís, Eloy, 2016. "Transport infrastructure and territorial cohesion in rural metro-adjacent regions: A multimodal accessibility approach. The case of Castilla-La Mancha in the context of Madrid (Spain)," Journal of Transport Geography, Elsevier, vol. 57(C), pages 115-133.
    9. Chunil Kim & Choongik Choi, 2019. "Towards Sustainable Urban Spatial Structure: Does Decentralization Reduce Commuting Times?," Sustainability, MDPI, vol. 11(4), pages 1-28, February.
    10. Longden, Thomas, 2016. "The Regularity and Irregularity of Travel: an Analysis of the Consistency of Travel Times Associated with Subsistence, Maintenance and Discretionary Activities," ET: Economic Theory 243150, Fondazione Eni Enrico Mattei (FEEM).
    11. Hao Wu & David Levinson, 2018. "Optimum Stop Spacing for Accessibility," Working Papers 171, University of Minnesota: Nexus Research Group.
    12. Moyano, Amparo & Martínez, Héctor S. & Coronado, José M., 2018. "From network to services: A comparative accessibility analysis of the Spanish high-speed rail system," Transport Policy, Elsevier, vol. 63(C), pages 51-60.
    13. Joly, I., 2011. "Test of the relation between travel and activities times : different representations of a demand derived from activity participation," Working Papers 201103, Grenoble Applied Economics Laboratory (GAEL).
    14. Goliszek Sławomir, 2022. "The potential accessibility to workplaces and working-age population by means of public and private car transport in Szczecin," Miscellanea Geographica. Regional Studies on Development, Sciendo, vol. 26(1), pages 31-41, January.
    15. Sweet, Matthias N., 2014. "Do firms flee traffic congestion?," Journal of Transport Geography, Elsevier, vol. 35(C), pages 40-49.
    16. Gjestland, Arnstein & McArthur, David Philip & Osland, Liv & Thorsen, Inge, 2014. "The suitability of hedonic models for cost-benefit analysis: Evidence from commuting flows," Transportation Research Part A: Policy and Practice, Elsevier, vol. 61(C), pages 136-151.
    17. Wang, Donggen & Chai, Yanwei & Li, Fei, 2011. "Built environment diversities and activity–travel behaviour variations in Beijing, China," Journal of Transport Geography, Elsevier, vol. 19(6), pages 1173-1186.
    18. Vincent Viguié, 2015. "Cross-commuting and housing prices in a polycentric modeling of cities," Working Papers 2015.09, FAERE - French Association of Environmental and Resource Economists.
    19. David Levinson, 2012. "Network Structure and City Size," PLOS ONE, Public Library of Science, vol. 7(1), pages 1-11, January.
    20. Sławomir Goliszek, 2021. "GIS tools and programming languages for creating models of public and private transport potential accessibility in Szczecin, Poland," Journal of Geographical Systems, Springer, vol. 23(1), pages 115-137, January.

    More about this item

    JEL classification:

    • R41 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Transportation Economics - - - Transportation: Demand, Supply, and Congestion; Travel Time; Safety and Accidents; Transportation Noise
    • R14 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General Regional Economics - - - Land Use Patterns

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nex:wpaper:urbanaccessacrossglobe. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: David Levinson (email available below). General contact details of provider: https://edirc.repec.org/data/nexmnus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.