IDEAS home Printed from https://ideas.repec.org/p/msh/ebswps/2018-15.html
   My bibliography  Save this paper

Efficient generation of time series with diverse and controllable characteristics

Author

Listed:
  • Yanfei Kang
  • Rob J Hyndman

    ()

  • Feng Li

    ()

Abstract

The explosion of time series data in recent years has brought a flourish of new time series analysis methods, for forecasting, clustering, classification and other tasks. The evaluation of these new methods requires a diverse collection of time series data to enable reliable comparisons against alternative approaches. We propose the use of mixture autoregressive (MAR) models to generate collections of time series with diverse features. We simulate sets of time series using MAR models and investigate the diversity and coverage of the simulated time series in a feature space. An efficient method is also proposed for generating new time series with controllable features by tuning the parameters of the MAR models. The simulated data based on our method can be used as evaluation tool for tasks such as time series classification and forecasting.

Suggested Citation

  • Yanfei Kang & Rob J Hyndman & Feng Li, 2018. "Efficient generation of time series with diverse and controllable characteristics," Monash Econometrics and Business Statistics Working Papers 15/18, Monash University, Department of Econometrics and Business Statistics.
  • Handle: RePEc:msh:ebswps:2018-15
    as

    Download full text from publisher

    File URL: https://www.monash.edu/business/ebs/research/publications/ebs/wp15-2018.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Villani, Mattias & Kohn, Robert & Giordani, Paolo, 2009. "Regression density estimation using smooth adaptive Gaussian mixtures," Journal of Econometrics, Elsevier, vol. 153(2), pages 155-173, December.
    2. Kwiatkowski, Denis & Phillips, Peter C. B. & Schmidt, Peter & Shin, Yongcheol, 1992. "Testing the null hypothesis of stationarity against the alternative of a unit root : How sure are we that economic time series have a unit root?," Journal of Econometrics, Elsevier, vol. 54(1-3), pages 159-178.
    3. Osborn, Denise R, et al, 1988. "Seasonality and the Order of Integration for Consumption," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 50(4), pages 361-377, November.
    4. Kang, Yanfei & Hyndman, Rob J. & Smith-Miles, Kate, 2017. "Visualising forecasting algorithm performance using time series instance spaces," International Journal of Forecasting, Elsevier, vol. 33(2), pages 345-358.
    5. Vinod, Hrishikesh D. & Lopez-de-Lacalle, Javier, 2009. "Maximum Entropy Bootstrap for Time Series: The meboot R Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 29(i05).
    6. Makridakis, Spyros & Spiliotis, Evangelos & Assimakopoulos, Vassilios, 2018. "The M4 Competition: Results, findings, conclusion and way forward," International Journal of Forecasting, Elsevier, vol. 34(4), pages 802-808.
    7. Thiyanga S Talagala & Rob J Hyndman & George Athanasopoulos, 2018. "Meta-learning how to forecast time series," Monash Econometrics and Business Statistics Working Papers 6/18, Monash University, Department of Econometrics and Business Statistics.
    8. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    time series features; time series generation; mixture autoregressive models.;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:msh:ebswps:2018-15. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dr Xibin Zhang). General contact details of provider: http://edirc.repec.org/data/dxmonau.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.