IDEAS home Printed from
   My bibliography  Save this article

The M4 Competition: Results, findings, conclusion and way forward


  • Makridakis, Spyros
  • Spiliotis, Evangelos
  • Assimakopoulos, Vassilios


The M4 competition is the continuation of three previous competitions started more than 45 years ago whose purpose was to learn how to improve forecasting accuracy, and how such learning can be applied to advance the theory and practice of forecasting. The purpose of M4 was to replicate the results of the previous ones and extend them into three directions: First significantly increase the number of series, second include Machine Learning (ML) forecasting methods, and third evaluate both point forecasts and prediction intervals. The five major findings of the M4 Competitions are: 1. Out Of the 17 most accurate methods, 12 were “combinations” of mostly statistical approaches. 2. The biggest surprise was a “hybrid” approach that utilized both statistical and ML features. This method’s average sMAPE was close to 10% more accurate than the combination benchmark used to compare the submitted methods. 3. The second most accurate method was a combination of seven statistical methods and one ML one, with the weights for the averaging being calculated by a ML algorithm that was trained to minimize the forecasting. 4. The two most accurate methods also achieved an amazing success in specifying the 95% prediction intervals correctly. 5. The six pure ML methods performed poorly, with none of them being more accurate than the combination benchmark and only one being more accurate than Naïve2. This paper presents some initial results of M4, its major findings and a logical conclusion. Finally, it outlines what the authors consider to be the way forward for the field of forecasting.

Suggested Citation

  • Makridakis, Spyros & Spiliotis, Evangelos & Assimakopoulos, Vassilios, 2018. "The M4 Competition: Results, findings, conclusion and way forward," International Journal of Forecasting, Elsevier, vol. 34(4), pages 802-808.
  • Handle: RePEc:eee:intfor:v:34:y:2018:i:4:p:802-808
    DOI: 10.1016/j.ijforecast.2018.06.001

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Kang, Yanfei & Hyndman, Rob J. & Smith-Miles, Kate, 2017. "Visualising forecasting algorithm performance using time series instance spaces," International Journal of Forecasting, Elsevier, vol. 33(2), pages 345-358.
    2. Makridakis, Spyros & Chatfield, Chris & Hibon, Michele & Lawrence, Michael & Mills, Terence & Ord, Keith & Simmons, LeRoy F., 1993. "The M2-competition: A real-time judgmentally based forecasting study," International Journal of Forecasting, Elsevier, vol. 9(1), pages 5-22, April.
    3. Nesreen Ahmed & Amir Atiya & Neamat El Gayar & Hisham El-Shishiny, 2010. "An Empirical Comparison of Machine Learning Models for Time Series Forecasting," Econometric Reviews, Taylor & Francis Journals, vol. 29(5-6), pages 594-621.
    4. Makridakis, Spyros & Hibon, Michele, 2000. "The M3-Competition: results, conclusions and implications," International Journal of Forecasting, Elsevier, vol. 16(4), pages 451-476.
    5. Petropoulos, Fotios & Makridakis, Spyros & Assimakopoulos, Vassilios & Nikolopoulos, Konstantinos, 2014. "‘Horses for Courses’ in demand forecasting," European Journal of Operational Research, Elsevier, vol. 237(1), pages 152-163.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Pauwels, Laurent & Radchenko, Peter & Vasnev, Andrey, 2019. "Higher Moment Constraints for Predictive Density Combinations," Working Papers BAWP-2019-01, University of Sydney Business School, Discipline of Business Analytics.
    2. repec:gam:jeners:v:11:y:2018:i:12:p:3520-:d:191309 is not listed on IDEAS
    3. Fildes, Robert & Ma, Shaohui & Kolassa, Stephan, 2019. "Retail forecasting: research and practice," MPRA Paper 89356, University Library of Munich, Germany.
    4. Yanfei Kang & Rob J Hyndman & Feng Li, 2018. "Efficient generation of time series with diverse and controllable characteristics," Monash Econometrics and Business Statistics Working Papers 15/18, Monash University, Department of Econometrics and Business Statistics.
    5. repec:gam:jeners:v:12:y:2019:i:10:p:1833-:d:231133 is not listed on IDEAS
    6. repec:eee:intfor:v:35:y:2019:i:2:p:687-698 is not listed on IDEAS


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:34:y:2018:i:4:p:802-808. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.