IDEAS home Printed from
   My bibliography  Save this article

Regression density estimation using smooth adaptive Gaussian mixtures


  • Villani, Mattias
  • Kohn, Robert
  • Giordani, Paolo


We model a regression density flexibly so that at each value of the covariates the density is a mixture of normals with the means, variances and mixture probabilities of the components changing smoothly as a function of the covariates. The model extends the existing models in two important ways. First, the components are allowed to be heteroscedastic regressions as the standard model with homoscedastic regressions can give a poor fit to heteroscedastic data, especially when the number of covariates is large. Furthermore, we typically need fewer components, which makes it easier to interpret the model and speeds up the computation. The second main extension is to introduce a novel variable selection prior into all the components of the model. The variable selection prior acts as a self-adjusting mechanism that prevents overfitting and makes it feasible to fit flexible high-dimensional surfaces. We use Bayesian inference and Markov Chain Monte Carlo methods to estimate the model. Simulated and real examples are used to show that the full generality of our model is required to fit a large class of densities, but also that special cases of the general model are interesting models for economic data.

Suggested Citation

  • Villani, Mattias & Kohn, Robert & Giordani, Paolo, 2009. "Regression density estimation using smooth adaptive Gaussian mixtures," Journal of Econometrics, Elsevier, vol. 153(2), pages 155-173, December.
  • Handle: RePEc:eee:econom:v:153:y:2009:i:2:p:155-173

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Ruppert,David & Wand,M. P. & Carroll,R. J., 2003. "Semiparametric Regression," Cambridge Books, Cambridge University Press, number 9780521785167, March.
    2. De Iorio, Maria & Muller, Peter & Rosner, Gary L. & MacEachern, Steven N., 2004. "An ANOVA Model for Dependent Random Measures," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 205-215, January.
    3. George Kapetanios, 2007. "Measuring Conditional Persistence in Nonlinear Time Series," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 69(3), pages 363-386, June.
    4. Geweke, John, 2007. "Interpretation and inference in mixture models: Simple MCMC works," Computational Statistics & Data Analysis, Elsevier, vol. 51(7), pages 3529-3550, April.
    5. Villani, Mattias & Kohn, Robert & Giordani, Paolo, 2007. "Nonparametric Regression Density Estimation Using Smoothly Varying Normal Mixtures," Working Paper Series 211, Sveriges Riksbank (Central Bank of Sweden).
    6. David J. Nott & Robert Kohn, 2005. "Adaptive sampling for Bayesian variable selection," Biometrika, Biometrika Trust, vol. 92(4), pages 747-763, December.
    7. Lawrence J. Christiano & Terry J. Fitzgerald, 2003. "Inflation and monetary policy in the twentieth century," Economic Perspectives, Federal Reserve Bank of Chicago, issue Q I, pages 22-45.
    8. Smith, Michael & Kohn, Robert, 1996. "Nonparametric regression using Bayesian variable selection," Journal of Econometrics, Elsevier, vol. 75(2), pages 317-343, December.
    9. Sassan Alizadeh & Michael W. Brandt & Francis X. Diebold, 2002. "Range-Based Estimation of Stochastic Volatility Models," Journal of Finance, American Finance Association, vol. 57(3), pages 1047-1091, June.
    10. Geweke, John & Keane, Michael, 2007. "Smoothly mixing regressions," Journal of Econometrics, Elsevier, vol. 138(1), pages 252-290, May.
    11. David B. Dunson & Natesh Pillai & Ju-Hyun Park, 2007. "Bayesian density regression," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(2), pages 163-183.
    12. Sally A. Wood, 2002. "Bayesian mixture of splines for spatially adaptive nonparametric regression," Biometrika, Biometrika Trust, vol. 89(3), pages 513-528, August.
    13. Ruppert,David & Wand,M. P. & Carroll,R. J., 2003. "Semiparametric Regression," Cambridge Books, Cambridge University Press, number 9780521780506, March.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Roberto Casarin & Stefano Grassi & Francesco Ravazzolo & Herman K. van Dijk, 2015. "Dynamic predictive density combinations for large data sets in economics and finance," Working Paper 2015/12, Norges Bank.
    2. Salimans, Tim, 2012. "Variable selection and functional form uncertainty in cross-country growth regressions," Journal of Econometrics, Elsevier, vol. 171(2), pages 267-280.
    3. Cozzini, Alberto & Jasra, Ajay & Montana, Giovanni & Persing, Adam, 2014. "A Bayesian mixture of lasso regressions with t-errors," Computational Statistics & Data Analysis, Elsevier, vol. 77(C), pages 84-97.
    4. Kalliovirta, Leena & Meitz, Mika & Saikkonen, Pentti, 2016. "Gaussian mixture vector autoregression," Journal of Econometrics, Elsevier, vol. 192(2), pages 485-498.
    5. Villani, Mattias & Kohn, Robert & Nott, David J., 2012. "Generalized smooth finite mixtures," Journal of Econometrics, Elsevier, vol. 171(2), pages 121-133.
    6. Gregor Kastner, 2016. "Sparse Bayesian time-varying covariance estimation in many dimensions," Papers 1608.08468,, revised Nov 2017.
    7. Norets, Andriy, 2015. "Bayesian regression with nonparametric heteroskedasticity," Journal of Econometrics, Elsevier, vol. 185(2), pages 409-419.
    8. Paolo Giordani & Xiuyan Mun & Robert Kohn, 2012. "Efficient Estimation of Covariance Matrices using Posterior Mode Multiple Shrinkage," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 11(1), pages 154-192, December.
    9. Quiroz, Matias & Villani, Mattias, 2013. "Dynamic mixture-of-experts models for longitudinal and discrete-time survival data," Working Paper Series 268, Sveriges Riksbank (Central Bank of Sweden).
    10. Norets, Andriy & Pelenis, Justinas, 2012. "Bayesian modeling of joint and conditional distributions," Journal of Econometrics, Elsevier, vol. 168(2), pages 332-346.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:153:y:2009:i:2:p:155-173. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.