IDEAS home Printed from https://ideas.repec.org/a/bla/obuest/v69y2007i3p363-386.html
   My bibliography  Save this article

Measuring Conditional Persistence in Nonlinear Time Series

Author

Listed:
  • George Kapetanios

Abstract

The persistence properties of economic time series have been a primary object of investigation in a variety of guises since the early days of econometrics. Recently, work on nonlinear modelling for time series has introduced the idea that persistence of a shock at a point in time may vary depending on the state of the process at that point in time. This article suggests investigating the persistence of processes conditioning on their history as a tool that may aid parametric nonlinear modelling. In particular, we suggest that examining the nonparametrically estimated derivatives of the conditional expectation of a variable with respect to its lag(s) may be a useful indicator of the variation in persistence with respect to its past history. We discuss in detail the implementation of the measure and present a Monte Carlo investigation. We further apply the persistence analysis to real exchange rates. Copyright 2007 Blackwell Publishing Ltd and the Department of Economics, University of Oxford.

Suggested Citation

  • George Kapetanios, 2007. "Measuring Conditional Persistence in Nonlinear Time Series," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 69(3), pages 363-386, June.
  • Handle: RePEc:bla:obuest:v:69:y:2007:i:3:p:363-386
    as

    Download full text from publisher

    File URL: http://www.blackwell-synergy.com/doi/abs/10.1111/j.1468-0084.2006.00437.x
    File Function: link to full text
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Villani, Mattias & Kohn, Robert & Giordani, Paolo, 2009. "Regression density estimation using smooth adaptive Gaussian mixtures," Journal of Econometrics, Elsevier, vol. 153(2), pages 155-173, December.
    2. Fernandez, Viviana, 2010. "Commodity futures and market efficiency: A fractional integrated approach," Resources Policy, Elsevier, vol. 35(4), pages 276-282, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:obuest:v:69:y:2007:i:3:p:363-386. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley-Blackwell Digital Licensing) or (Christopher F. Baum). General contact details of provider: http://edirc.repec.org/data/sfeixuk.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.