IDEAS home Printed from https://ideas.repec.org/p/msh/ebswps/2012-14.html
   My bibliography  Save this paper

Nonlinear Regression with Harris Recurrent Markov Chains

Author

Listed:
  • Degui Li

    ()

  • Dag Tjøstheim
  • Jiti Gao

    ()

Abstract

In this paper, we study parametric nonlinear regression under the Harris recurrent Markov chain framework. We first consider the nonlinear least squares estimators of the parameters in the homoskedastic case, and establish asymptotic theory for the proposed estimators. Our results show that the convergence rates for the estimators rely not only on the properties of the nonlinear regression function, but also on the number of regenerations for the Harris recurrent Markov chain. We also discuss the estimation of the parameter vector in a conditional volatility function and its asymptotic theory. Furthermore, we apply our results to the nonlinear regression with I(1) processes and establish an asymptotic distribution theory which is comparable to that obtained by Park and Phillips (2001). Some simulation studies are provided to illustrate the proposed approaches and results.

Suggested Citation

  • Degui Li & Dag Tjøstheim & Jiti Gao, 2012. "Nonlinear Regression with Harris Recurrent Markov Chains," Monash Econometrics and Business Statistics Working Papers 14/12, Monash University, Department of Econometrics and Business Statistics.
  • Handle: RePEc:msh:ebswps:2012-14
    as

    Download full text from publisher

    File URL: http://business.monash.edu/econometrics-and-business-statistics/research/publications/ebs/wp14-12.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Gao, Jiti & Kanaya, Shin & Li, Degui & Tjøstheim, Dag, 2015. "Uniform Consistency For Nonparametric Estimators In Null Recurrent Time Series," Econometric Theory, Cambridge University Press, vol. 31(05), pages 911-952, October.
    2. Terasvirta, Timo & Tjostheim, Dag & Granger, Clive W. J., 2010. "Modelling Nonlinear Economic Time Series," OUP Catalogue, Oxford University Press, number 9780199587155.
    3. Liang Peng, 2003. "Least absolute deviations estimation for ARCH and GARCH models," Biometrika, Biometrika Trust, vol. 90(4), pages 967-975, December.
    4. Park, Joon Y & Phillips, Peter C B, 2001. "Nonlinear Regressions with Integrated Time Series," Econometrica, Econometric Society, vol. 69(1), pages 117-161, January.
    5. Qiying Wang & Peter C. B. Phillips, 2009. "Structural Nonparametric Cointegrating Regression," Econometrica, Econometric Society, vol. 77(6), pages 1901-1948, November.
    6. Park, Joon Y. & Phillips, Peter C.B., 1999. "Asymptotics For Nonlinear Transformations Of Integrated Time Series," Econometric Theory, Cambridge University Press, vol. 15(03), pages 269-298, June.
    7. Myklebust, Terje & Karlsen, Hans Arnfinn & Tjøstheim, Dag, 2012. "Null Recurrent Unit Root Processes," Econometric Theory, Cambridge University Press, vol. 28(01), pages 1-41, February.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Asymptotic distribution; asymptotically homogeneous functions; ?-null recurrent Markov chains; Harris recurrence; integrable functions; least squares estimation; nonlinear regression.;

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:msh:ebswps:2012-14. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dr Xibin Zhang) or (Joanne Lustig). General contact details of provider: http://edirc.repec.org/data/dxmonau.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.