IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this paper

The degree measure as utility function over positions in networks

Listed author(s):
Registered author(s):

    In this paper, we connect the social network theory on centrality measures to the economic theory of preferences and utility. Using the fact that networks form a special class of cooperative TU-games, we provide a foundation for the degree measure as a von Neumann-Morgenstern expected utility function reflecting preferences over being in different positions in different networks. The famous degree measure assigns to every position in a weighted network the sum of the weights of all links with its neighbours. A crucial property of a preference relation over network positions is neutrality to ordinary risk. If an expected utility function over network positions satisfies this property and some regularity properties, then it must be represented by a utility function that is a multiple of the degree centrality measure. We show this in three steps. First, we characterize the degree measure as a centrality measure for weighted networks using four natural axioms. Second, we relate these network centrality axioms to properties of preference relations over positions in networks. Third, we show that the expected utility function is equal to a multiple of the degree measure if and only if it represents a regular preference relation that is neutral to ordinary risk. Similarly, we characterize a class of affine combinations of the outdegree and indegree measure in weighted directed networks and deliver its interpretation as a von Neumann-Morgenstern expected utility function

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: ftp://mse.univ-paris1.fr/pub/mse/CES2017/17035.pdf
    Download Restriction: no

    Paper provided by Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne in its series Documents de travail du Centre d'Economie de la Sorbonne with number 17035.

    as
    in new window

    Length: 22 pages
    Date of creation: Jul 2017
    Handle: RePEc:mse:cesdoc:17035
    Contact details of provider: Postal:
    106-112 boulevard de l'Hôpital 75 647 PARIS CEDEX 13

    Phone: + 33 44 07 81 00
    Fax: + 33 1 44 07 83 01
    Web page: http://centredeconomiesorbonne.univ-paris1.fr/

    More information through EDIRC

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as
    in new window


    1. Trockel, Walter, 1992. "An Alternative Proof for the Linear Utility Representation Theorem," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 2(2), pages 298-302, April.
    2. Demange, Gabrielle, 2014. "A ranking method based on handicaps," Theoretical Economics, Econometric Society, vol. 9(3), September.
    3. Gert Sabidussi, 1966. "The centrality index of a graph," Psychometrika, Springer;The Psychometric Society, vol. 31(4), pages 581-603, December.
    4. A. van den Nouweland & P. Borm & W. van Golstein Brouwers & R. Groot Bruinderink & S. Tijs, 1996. "A Game Theoretic Approach to Problems in Telecommunication," Management Science, INFORMS, vol. 42(2), pages 294-303, February.
    5. Maniquet, Francois, 2003. "A characterization of the Shapley value in queueing problems," Journal of Economic Theory, Elsevier, vol. 109(1), pages 90-103, March.
    6. van den Brink, René & González-Arangüena, Enrique & Manuel, Conrado & del Pozo, Mónica, 2014. "Order monotonic solutions for generalized characteristic functions," European Journal of Operational Research, Elsevier, vol. 238(3), pages 786-796.
    7. Neuefeind, Wilhelm & Trockel, Walter, 1995. "Continuous Linear Representability of Binary Relations," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 6(2), pages 351-356, July.
    8. Ignacio Palacios-Huerta & Oscar Volij, 2004. "The Measurement of Intellectual Influence," Econometrica, Econometric Society, vol. 72(3), pages 963-977, 05.
    9. Dequiedt, Vianney & Zenou, Yves, 2014. "Local and Consistent Centrality Measures in Networks," CEPR Discussion Papers 10031, C.E.P.R. Discussion Papers.
    10. Bouyssou, Denis, 1992. "Ranking methods based on valued preference relations: A characterization of the net flow method," European Journal of Operational Research, Elsevier, vol. 60(1), pages 61-67, July.
    11. Mitri Kitti, 2016. "Axioms for centrality scoring with principal eigenvectors," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 46(3), pages 639-653, March.
    12. Trockel, Walter, 1989. "Classification of budget-invariant monotonic preferences," Economics Letters, Elsevier, vol. 30(1), pages 7-10.
    13. van den Brink, René & Gilles, Robert P., 2009. "The outflow ranking method for weighted directed graphs," European Journal of Operational Research, Elsevier, vol. 193(2), pages 484-491, March.
    14. Pradeep Dubey & Lloyd S. Shapley, 1979. "Mathematical Properties of the Banzhaf Power Index," Mathematics of Operations Research, INFORMS, vol. 4(2), pages 99-131, May.
    15. Leo Katz, 1953. "A new status index derived from sociometric analysis," Psychometrika, Springer;The Psychometric Society, vol. 18(1), pages 39-43, March.
    16. Bouyssou, D. & Perny, P., 1992. "Ranking methods for valued preference relations : A characterization of a method based on leaving and entering flows," European Journal of Operational Research, Elsevier, vol. 61(1-2), pages 186-194, August.
    17. Nowak Andrzej S. & Radzik Tadeusz, 1994. "The Shapley Value for n-Person Games in Generalized Characteristic Function Form," Games and Economic Behavior, Elsevier, vol. 6(1), pages 150-161, January.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:mse:cesdoc:17035. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Lucie Label)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.