IDEAS home Printed from https://ideas.repec.org/p/mlb/wpaper/1196.html
   My bibliography  Save this paper

Estimating Fiscal Multipliers:News From a Nonlinear World

Author

Listed:
  • Giovanni Caggiano

    (University of Padova)

  • Efrem Castelnuovo

    (University of Melbourne, University of Padova)

  • Valentina Colombo

    (University of Padova)

  • Gabriela Nodari

    (University of Verona, University of New South Wales)

Abstract

We estimate nonlinear VARs to assess to what extent .scal spending multipliers are countercyclical in the United States. We deal with the issue of non-fundamentalness due to .scal foresight by appealing to sums of revisions of expectations of .scal expenditures. This measure of anticipated .scal shocks is shown to carry valuable information about future dynamics of public spending. Results based on generalized impulse responses suggest that .scal spending multipliers in recessions are greater than one, but not statistically larger than those in expansions. However, nonlinearities arise when focusing on "extreme" events, i.e., deep recessions vs. strong expansionary periods.

Suggested Citation

  • Giovanni Caggiano & Efrem Castelnuovo & Valentina Colombo & Gabriela Nodari, 2015. "Estimating Fiscal Multipliers:News From a Nonlinear World," Department of Economics - Working Papers Series 1196, The University of Melbourne.
  • Handle: RePEc:mlb:wpaper:1196
    as

    Download full text from publisher

    File URL: http://fbe.unimelb.edu.au/__data/assets/pdf_file/0003/1434441/1196EFREMfiscalnews_30_econdept.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Mario Forni & Luca Gambetti & Luca Sala, 2014. "No News in Business Cycles," Economic Journal, Royal Economic Society, vol. 124(581), pages 1168-1191, December.
    2. Paul Beaudry & Franck Portier, 2014. "News-Driven Business Cycles: Insights and Challenges," Journal of Economic Literature, American Economic Association, vol. 52(4), pages 993-1074, December.
    3. Ben S. Bernanke & Jean Boivin & Piotr Eliasz, 2005. "Measuring the Effects of Monetary Policy: A Factor-Augmented Vector Autoregressive (FAVAR) Approach," The Quarterly Journal of Economics, Oxford University Press, vol. 120(1), pages 387-422.
    4. Olivier J. Blanchard & Daniel Leigh, 2013. "Growth Forecast Errors and Fiscal Multipliers," American Economic Review, American Economic Association, vol. 103(3), pages 117-120, May.
    5. Mario Forni & Luca Gambetti & Marco Lippi & Luca Sala, 2017. "Noisy News in Business Cycles," American Economic Journal: Macroeconomics, American Economic Association, vol. 9(4), pages 122-152, October.
    6. Domenico Giannone & Lucrezia Reichlin, 2006. "Does information help recovering structural shocks from past observations?," Journal of the European Economic Association, MIT Press, vol. 4(2-3), pages 455-465, 04-05.
    7. Lippi, Marco & Reichlin, Lucrezia, 1993. "The Dynamic Effects of Aggregate Demand and Supply Disturbances: Comment," American Economic Review, American Economic Association, vol. 83(3), pages 644-652, June.
    8. Frank Smets & Rafael Wouters, 2007. "Shocks and Frictions in US Business Cycles: A Bayesian DSGE Approach," American Economic Review, American Economic Association, vol. 97(3), pages 586-606, June.
    9. Fève, Patrick & Matheron, Julien & Sahuc, Jean-Guillaume, 2009. "On the dynamic implications of news shocks," Economics Letters, Elsevier, vol. 102(2), pages 96-98, February.
    10. Eric M. Leeper & Todd B. Walker & Shu‐Chun Susan Yang, 2013. "Fiscal Foresight and Information Flows," Econometrica, Econometric Society, vol. 81(3), pages 1115-1145, May.
    11. Eric R. Sims, 2012. "News, Non-Invertibility, and Structural VARs," Advances in Econometrics, in: DSGE Models in Macroeconomics: Estimation, Evaluation, and New Developments, pages 81-135, Emerald Group Publishing Limited.
    12. Alan J. Auerbach & Yuriy Gorodnichenko, 2012. "Measuring the Output Responses to Fiscal Policy," American Economic Journal: Economic Policy, American Economic Association, vol. 4(2), pages 1-27, May.
    13. Chernozhukov, Victor & Hong, Han, 2003. "An MCMC approach to classical estimation," Journal of Econometrics, Elsevier, vol. 115(2), pages 293-346, August.
    14. Stock, James H & Watson, Mark W, 2002. "Macroeconomic Forecasting Using Diffusion Indexes," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(2), pages 147-162, April.
    15. Valerie A. Ramey & Sarah Zubairy, 2018. "Government Spending Multipliers in Good Times and in Bad: Evidence from US Historical Data," Journal of Political Economy, University of Chicago Press, vol. 126(2), pages 850-901.
    16. Dario Caldara & Christophe Kamps, 2017. "The Analytics of SVARs: A Unified Framework to Measure Fiscal Multipliers," Review of Economic Studies, Oxford University Press, vol. 84(3), pages 1015-1040.
    17. Mario Forni & Luca Gambetti, 2010. "Fiscal Foresight and the Effects of Government Spending," UFAE and IAE Working Papers 851.10, Unitat de Fonaments de l'Anàlisi Econòmica (UAB) and Institut d'Anàlisi Econòmica (CSIC).
    18. Koop, Gary & Pesaran, M. Hashem & Potter, Simon M., 1996. "Impulse response analysis in nonlinear multivariate models," Journal of Econometrics, Elsevier, vol. 74(1), pages 119-147, September.
    19. Ricco, Giovanni, 2015. "A new identification of fiscal shocks based on the information flow," Working Paper Series 1813, European Central Bank.
    20. Olivier Blanchard & Roberto Perotti, 2002. "An Empirical Characterization of the Dynamic Effects of Changes in Government Spending and Taxes on Output," The Quarterly Journal of Economics, Oxford University Press, vol. 117(4), pages 1329-1368.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ramey, V.A., 2016. "Macroeconomic Shocks and Their Propagation," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 71-162, Elsevier.
    2. Forni, Mario & Gambetti, Luca, 2016. "Government spending shocks in open economy VARs," Journal of International Economics, Elsevier, vol. 99(C), pages 68-84.
    3. Andrea Boitani & Salvatore Perdichizzi, 2018. "Public Expenditure Multipliers in recessions. Evidence from the Eurozone," DISCE - Working Papers del Dipartimento di Economia e Finanza def068, Università Cattolica del Sacro Cuore, Dipartimenti e Istituti di Scienze Economiche (DISCE).
    4. Soccorsi, Stefano, 2016. "Measuring nonfundamentalness for structural VARs," Journal of Economic Dynamics and Control, Elsevier, vol. 71(C), pages 86-101.
    5. Amendola, Adalgiso & Di Serio, Mario & Fragetta, Matteo & Melina, Giovanni, 2020. "The euro-area government spending multiplier at the effective lower bound," European Economic Review, Elsevier, vol. 127(C).
    6. Ben Zeev, Nadav, 2018. "What can we learn about news shocks from the late 1990s and early 2000s boom-bust period?," Journal of Economic Dynamics and Control, Elsevier, vol. 87(C), pages 94-105.
    7. Forni, Mario & Gambetti, Luca, 2014. "Sufficient information in structural VARs," Journal of Monetary Economics, Elsevier, vol. 66(C), pages 124-136.
    8. Mario Forni & Luca Gambetti & Luca Sala, 2018. "Fundamentalness, Granger Causality and Aggregation," Center for Economic Research (RECent) 139, University of Modena and Reggio E., Dept. of Economics "Marco Biagi".
    9. Kang, Jihye & Kim, Soyoung, 2022. "Government spending news and surprise shocks: It’s the timing and persistence," Journal of Macroeconomics, Elsevier, vol. 73(C).
    10. Fotiou, Alexandra & Shen, Wenyi & Yang, Shu-Chun S., 2020. "The fiscal state-dependent effects of capital income tax cuts," Journal of Economic Dynamics and Control, Elsevier, vol. 117(C).
    11. Nadav Ben Zeev, 2019. "Is There A Single Shock That Drives The Majority Of Business Cycle Fluctuations?," Working Papers 1906, Ben-Gurion University of the Negev, Department of Economics.
    12. Salvatore Perdichizzi, 2017. "Estimating Fiscal multipliers in the Eurozone. A Nonlinear Panel Data Approach," DISCE - Working Papers del Dipartimento di Economia e Finanza def058, Università Cattolica del Sacro Cuore, Dipartimenti e Istituti di Scienze Economiche (DISCE).
    13. Di Serio, Mario & Fragetta, Matteo & Melina, Giovanni, 2021. "The impact of r-g on Euro-Area government spending multipliers," Journal of International Money and Finance, Elsevier, vol. 119(C).
    14. Pallara, Kevin, 2016. "The dynamic effects of government spending: a FAVAR approach," MPRA Paper 92283, University Library of Munich, Germany.
    15. Danilo Cascaldi-Garcia, 2022. "Forecast Revisions as Instruments for News Shocks," International Finance Discussion Papers 1341, Board of Governors of the Federal Reserve System (U.S.).
    16. Valerie A. Ramey, 2019. "Ten Years after the Financial Crisis: What Have We Learned from the Renaissance in Fiscal Research?," Journal of Economic Perspectives, American Economic Association, vol. 33(2), pages 89-114, Spring.
    17. Emilio Colombo & Davide Furceri & Pietro Pizzuto & Patrizio Tirelli, 2022. "Fiscal Multipliers and Informality," IMF Working Papers 2022/082, International Monetary Fund.
    18. Luca Sala & Luca Gambetti & Mario Forni, 2016. "VAR Information and the Empirical Validation of DSGE Models," 2016 Meeting Papers 260, Society for Economic Dynamics.
    19. Mathias Klein & Roland Winkler, 2021. "The government spending multiplier at the zero lower bound: International evidence from historical data," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(6), pages 744-759, September.
    20. Forni, Mario & Gambetti, Luca & Lippi, Marco & Sala, Luca, 2020. "Common Component Structural VARs," CEPR Discussion Papers 15529, C.E.P.R. Discussion Papers.

    More about this item

    Keywords

    Fiscal news; Fiscal foresight; Fiscal spending multiplier; Smooth Transition Vector-AutoRegressions; Extreme events;
    All these keywords.

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles
    • E52 - Macroeconomics and Monetary Economics - - Monetary Policy, Central Banking, and the Supply of Money and Credit - - - Monetary Policy

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:mlb:wpaper:1196. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Dandapani Lokanathan (email available below). General contact details of provider: https://edirc.repec.org/data/demelau.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.