IDEAS home Printed from https://ideas.repec.org/p/lug/wpaper/1003.html
   My bibliography  Save this paper

Estimation of indirect cost and evaluation of protective measures for infrastructure vulnerability: A case study on the transalpine transport corridor

Author

Listed:
  • Lorenzo Masiero

    () (Istituto Ricerche Economiche (IRE), Università della Svizzera Italiana, Svizzera)

  • Rico Maggi

    () (Istituto Ricerche Economiche (IRE), Università della Svizzera Italiana, Svizzera)

Abstract

Infrastructure vulnerability is a topic of rising interest in the scientific literature for both the general increase of unexpected events and the strategic importance of certain links. Protective investments are extremely costly and risks are distributed in space and time which poses important decision problems to the public sector decision makers. In an economic prospective, the evaluation of infrastructure vulnerability is oriented on the estimation of direct and indirect costs of hazards. Although the estimation of direct costs is straightforward, the evaluation of indirect cost involves factors non-directly observable making the approximation a difficult issue. This paper provides an estimate of the indirect costs caused by a two weeks closure of the north-south Gotthard road corridor, one of the most important infrastructure links in Europe, and implements a cost-benefit analysis tool that allows the evaluation of measures ensuring a full protection along the corridor. The identification of the indirect cost relies on the generalized cost estimation, which parameters come from two stated preference experiments, the first based on actual condition whereas the second assumes a road closure. The procedure outlined in this paper proposes a methodology aimed to identify and quantify the economic vulnerability associated with a road transport infrastructure and, to evaluate the economic and social efficiency of a vulnerability reduction by the consideration of protective measures.

Suggested Citation

  • Lorenzo Masiero & Rico Maggi, 2010. "Estimation of indirect cost and evaluation of protective measures for infrastructure vulnerability: A case study on the transalpine transport corridor," Quaderni della facoltà di Scienze economiche dell'Università di Lugano 1003, USI Università della Svizzera italiana.
  • Handle: RePEc:lug:wpaper:1003
    as

    Download full text from publisher

    File URL: http://doc.rero.ch/lm.php?url=1000,42,6,20100304135013-ZZ/wp1003.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Simona Bolis & Rico Maggi, 2003. "Logistics Strategy and Transport Service Choices: An Adaptive Stated Preference Experiment," Growth and Change, Wiley Blackwell, vol. 34(4), pages 490-504, September.
    2. Chen, Anthony & Yang, Hai & Lo, Hong K. & Tang, Wilson H., 2002. "Capacity reliability of a road network: an assessment methodology and numerical results," Transportation Research Part B: Methodological, Elsevier, vol. 36(3), pages 225-252, March.
    3. Michael Taylor & Somenahalli Sekhar & Glen D'Este, 2006. "Application of Accessibility Based Methods for Vulnerability Analysis of Strategic Road Networks," Networks and Spatial Economics, Springer, vol. 6(3), pages 267-291, September.
    4. Berdica, Katja, 2002. "An introduction to road vulnerability: what has been done, is done and should be done," Transport Policy, Elsevier, vol. 9(2), pages 117-127, April.
    5. Danielis, Romeo & Marcucci, Edoardo & Rotaris, Lucia, 2005. "Logistics managers' stated preferences for freight service attributes," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 41(3), pages 201-215, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Masiero, Lorenzo & Hensher, David A., 2010. "Analyzing loss aversion and diminishing sensitivity in a freight transport stated choice experiment," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(5), pages 349-358, June.
    2. Levi Vermote & Cathy Macharis & Koen Putman, 2013. "A Road Network for Freight Transport in Flanders: Multi-Actor Multi-Criteria Assessment of Alternative Ring Ways," Sustainability, MDPI, Open Access Journal, vol. 5(10), pages 1-25, September.
    3. Lorenzo Masiero & David Hensher, 2011. "Shift of reference point and implications on behavioral reaction to gains and losses," Transportation, Springer, vol. 38(2), pages 249-271, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Masiero, Lorenzo & Maggi, Rico, 2012. "Estimation of indirect cost and evaluation of protective measures for infrastructure vulnerability: A case study on the transalpine transport corridor," Transport Policy, Elsevier, vol. 20(C), pages 13-21.
    2. Richard Connors & David Watling, 2015. "Assessing the Demand Vulnerability of Equilibrium Traffic Networks via Network Aggregation," Networks and Spatial Economics, Springer, vol. 15(2), pages 367-395, June.
    3. Nogal, Maria & Morales Nápoles, Oswaldo & O’Connor, Alan, 2019. "Structured expert judgement to understand the intrinsic vulnerability of traffic networks," Transportation Research Part A: Policy and Practice, Elsevier, vol. 127(C), pages 136-152.
    4. Muriel-Villegas, Juan E. & Alvarez-Uribe, Karla C. & Patiño-Rodríguez, Carmen E. & Villegas, Juan G., 2016. "Analysis of transportation networks subject to natural hazards – Insights from a Colombian case," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 151-165.
    5. Watling, David & Balijepalli, N.C., 2012. "A method to assess demand growth vulnerability of travel times on road network links," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(5), pages 772-789.
    6. Gu, Yu & Fu, Xiao & Liu, Zhiyuan & Xu, Xiangdong & Chen, Anthony, 2020. "Performance of transportation network under perturbations: Reliability, vulnerability, and resilience," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 133(C).
    7. Reggiani, Aura & Nijkamp, Peter & Lanzi, Diego, 2015. "Transport resilience and vulnerability: The role of connectivity," Transportation Research Part A: Policy and Practice, Elsevier, vol. 81(C), pages 4-15.
    8. Jenelius, Erik & Mattsson, Lars-Göran, 2012. "Road network vulnerability analysis of area-covering disruptions: A grid-based approach with case study," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(5), pages 746-760.
    9. Lucia Rotaris & Romeo Danielis & Igor Sarman & Edoardo Marcucci, 2012. "Testing for nonlinearity in the choice of a freight transport service," European Transport \ Trasporti Europei, ISTIEE, Institute for the Study of Transport within the European Economic Integration, issue 50, pages 1-4.
    10. Bell, Michael G.H. & Kurauchi, Fumitaka & Perera, Supun & Wong, Walter, 2017. "Investigating transport network vulnerability by capacity weighted spectral analysis," Transportation Research Part B: Methodological, Elsevier, vol. 99(C), pages 251-266.
    11. Bagloee, Saeed Asadi & Sarvi, Majid & Wolshon, Brian & Dixit, Vinayak, 2017. "Identifying critical disruption scenarios and a global robustness index tailored to real life road networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 98(C), pages 60-81.
    12. Li, Tao & Rong, Lili & Yan, Kesheng, 2019. "Vulnerability analysis and critical area identification of public transport system: A case of high-speed rail and air transport coupling system in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 127(C), pages 55-70.
    13. Rodríguez-Núñez, Eduardo & García-Palomares, Juan Carlos, 2014. "Measuring the vulnerability of public transport networks," Journal of Transport Geography, Elsevier, vol. 35(C), pages 50-63.
    14. Gonçalves, L.A.P.J. & Ribeiro, P.J.G., 2020. "Resilience of urban transportation systems. Concept, characteristics, and methods," Journal of Transport Geography, Elsevier, vol. 85(C).
    15. Michael A. P. Taylor, 2008. "Critical Transport Infrastructure in Urban Areas: Impacts of Traffic Incidents Assessed Using Accessibility‐Based Network Vulnerability Analysis," Growth and Change, Wiley Blackwell, vol. 39(4), pages 593-616, December.
    16. Edoardo Marcucci, 2013. "Logistics Managers' Stated Preferences For Freight Service Attributes: A Comparative Research Method Analysis," Working Papers 0213, CREI Università degli Studi Roma Tre, revised 2013.
    17. Nima Haghighi & S. Kiavash Fayyaz & Xiaoyue Cathy Liu & Tony H. Grubesic & Ran Wei, 2018. "A Multi-Scenario Probabilistic Simulation Approach for Critical Transportation Network Risk Assessment," Networks and Spatial Economics, Springer, vol. 18(1), pages 181-203, March.
    18. Taylor, Michael A.P. & Susilawati,, 2012. "Remoteness and accessibility in the vulnerability analysis of regional road networks," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(5), pages 761-771.
    19. Victor Cantillo & Luis F. Macea & Miguel Jaller, 2019. "Assessing Vulnerability of Transportation Networks for Disaster Response Operations," Networks and Spatial Economics, Springer, vol. 19(1), pages 243-273, March.
    20. Lorenzo Masiero & David Hensher, 2011. "Shift of reference point and implications on behavioral reaction to gains and losses," Transportation, Springer, vol. 38(2), pages 249-271, March.

    More about this item

    Keywords

    infrastructure vulnerability; choice experiment; cost-benefit analysis; freight transport;

    JEL classification:

    • C25 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Discrete Regression and Qualitative Choice Models; Discrete Regressors; Proportions; Probabilities
    • L91 - Industrial Organization - - Industry Studies: Transportation and Utilities - - - Transportation: General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:lug:wpaper:1003. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Alessio Tutino). General contact details of provider: https://www.bul.sbu.usi.ch .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.