IDEAS home Printed from https://ideas.repec.org/p/lsg/lsgwps/wp111.html
   My bibliography  Save this paper

Predicting agricultural impacts of large-scale drought: 2012 and the case for better modeling

Author

Listed:
  • Joshua Elliot
  • Michael Glotter
  • Neil Best
  • Ken Boote
  • Jim Jones
  • Jerry Hatfield
  • Cynthia Rozenweig
  • Leonard A. Smith
  • Ian Foster

Abstract

No abstract is available for this item.

Suggested Citation

  • Joshua Elliot & Michael Glotter & Neil Best & Ken Boote & Jim Jones & Jerry Hatfield & Cynthia Rozenweig & Leonard A. Smith & Ian Foster, 2013. "Predicting agricultural impacts of large-scale drought: 2012 and the case for better modeling," GRI Working Papers 111, Grantham Research Institute on Climate Change and the Environment.
  • Handle: RePEc:lsg:lsgwps:wp111
    as

    Download full text from publisher

    File URL: http://www.lse.ac.uk/GranthamInstitute/wp-content/uploads/2012/04/WP111-agricultural-impacts-large-scale-drought-2012-modeling.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. You, Liangzhi & Wood, Stanley, 2006. "An entropy approach to spatial disaggregation of agricultural production," Agricultural Systems, Elsevier, vol. 90(1-3), pages 329-347, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Joshua D. Woodard, 2016. "Data Science and Management for Large Scale Empirical Applications in Agricultural and Applied Economics Research," Applied Economic Perspectives and Policy, Agricultural and Applied Economics Association, vol. 38(3), pages 373-388.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Terrance Hurley & Jawoo Koo & Kindie Tesfaye, 2018. "Weather risk: how does it change the yield benefits of nitrogen fertilizer and improved maize varieties in sub‐Saharan Africa?," Agricultural Economics, International Association of Agricultural Economists, vol. 49(6), pages 711-723, November.
    2. António Xavier & Rui Fragoso & Maria Belém Costa Freitas & Maria Socorro Rosário, 2019. "An Approach Using Entropy and Supervised Classifications to Disaggregate Agricultural Data at a Local Level," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 17(4), pages 763-779, December.
    3. Song, Jingyu & Delgado, Michael & Preckel, Paul & Villoria, Nelson, 2016. "Pixel Level Cropland Allocation and Marginal Impacts of Biophysical Factors," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 235327, Agricultural and Applied Economics Association.
    4. Valin, Hugo & Havlik, Petr & Mosnier, Aline & Obersteiner, Michael, 2012. "Impacts of Alternative Climate Change Mitigation Policies on Food Consumption under various Diet Scenarios," Conference papers 332253, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    5. Kiselev, Sergey & Romashkin, Roman & Nelson, Gerald C. & Mason-D'Croz, Daniel & Palazzo, Amanda, 2013. "Russia's food security and climate change: Looking into the future," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 7, pages 1-66.
    6. Hyman, Glenn & Fujisaka, Sam & Jones, Peter & Wood, Stanley & de Vicente, M. Carmen & Dixon, John, 2008. "Strategic approaches to targeting technology generation: Assessing the coincidence of poverty and drought-prone crop production," Agricultural Systems, Elsevier, vol. 98(1), pages 50-61, July.
    7. Thomas, Timothy S., 2015. "US maize data reveals adaptation to heat and water stress:," IFPRI discussion papers 1485, International Food Policy Research Institute (IFPRI).
    8. Xiong, Wei & Balkovič, Juraj & van der Velde, Marijn & Zhang, Xuesong & Izaurralde, R. César & Skalský, Rastislav & Lin, Erda & Mueller, Nathan & Obersteiner, Michael, 2014. "A calibration procedure to improve global rice yield simulations with EPIC," Ecological Modelling, Elsevier, vol. 273(C), pages 128-139.
    9. Gruere, Guillaume & Bouet, Antoine & Mevel, Simon, 2007. "Genetically modified food and international trade: The case of India, Bangladesh, Indonesia, and the Philippines," IFPRI discussion papers 740, International Food Policy Research Institute (IFPRI).
    10. You, Liangzhi & Wood, Stanley & Wood-Sichra, Ulrike & Wu, Wenbin, 2014. "Generating global crop distribution maps: From census to grid," Agricultural Systems, Elsevier, vol. 127(C), pages 53-60.
    11. Anna Jiang & Wanshun Zhang & Feng Zhou & Hong Peng & Xin Liu & Yue Wang & Xiao Zhang, 2023. "Quantitative Assessment of Spatial–Temporal Characteristics of Agricultural Development Level in China: A County-Level Analysis," Sustainability, MDPI, vol. 15(22), pages 1-20, November.
    12. Havlík, Petr & Schneider, Uwe A. & Schmid, Erwin & Böttcher, Hannes & Fritz, Steffen & Skalský, Rastislav & Aoki, Kentaro & Cara, Stéphane De & Kindermann, Georg & Kraxner, Florian & Leduc, Sylvain & , 2011. "Global land-use implications of first and second generation biofuel targets," Energy Policy, Elsevier, vol. 39(10), pages 5690-5702, October.
    13. María Blanco & Benjamin Van Doorslaer & Wolfgang Britz & Heinz-Peter Witzke, 2012. "Exploring the feasibility of integrating water issues into the CAPRI model," JRC Research Reports JRC77058, Joint Research Centre.
    14. Mosnier, A. & Havlík, P. & Valin, H. & Baker, J. & Murray, B. & Feng, S. & Obersteiner, M. & McCarl, B.A. & Rose, S.K. & Schneider, U.A., 2013. "Alternative U.S. biofuel mandates and global GHG emissions: The role of land use change, crop management and yield growth," Energy Policy, Elsevier, vol. 57(C), pages 602-614.
    15. Hertel, Thomas W. & Lobell, David B., 2014. "Agricultural adaptation to climate change in rich and poor countries: Current modeling practice and potential for empirical contributions," Energy Economics, Elsevier, vol. 46(C), pages 562-575.
    16. Mugabe, Francis T. & Thomas, Timothy S. & Hachigonta, Sepo & Sibanda, Lindiwe M., 2013. "Zimbabwe," IFPRI book chapters, in: Hachigonta, Sepo & Nelson, Gerald C. & Thomas, Timothy S. & Sibanda, Lindiwe Majele (ed.), Southern African agriculture and climate change: A comprehensive analysis, chapter 10, pages 289-324, International Food Policy Research Institute (IFPRI).
    17. Szonyi, Judit & De Pauw, Eddy & Rovere, Roberto La & Aw-Hassan, Aden, 2010. "Mapping natural resource-based poverty, with an application to rural Syria," Food Policy, Elsevier, vol. 35(1), pages 41-50, February.
    18. Schmitz, Christoph & van Meijl, Hans & Kyle, Page & Fujimori, Shinichiro & Gurgel, Angelo & Havlik, Petr & d'Croz, Daniel Mason & Popp, Alexander & Sands, Ron & Tabeau, Andrzej & van der Mensbrugghe, , 2013. "An agro-economic model comparison of cropland change until 2050," Conference papers 332351, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    19. Johnson, M., 2014. "Exploring strategic priorities for regional agricultural research and development investments in Southern Africa," IWMI Working Papers H046297, International Water Management Institute.
    20. Atsushi Iimi & Liangzhi You & Ulrike Wood-Sichra, 2020. "Spatial Autocorrelation Panel Regression: Agricultural Production and Transport Connectivity," Networks and Spatial Economics, Springer, vol. 20(2), pages 529-547, June.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:lsg:lsgwps:wp111. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: The GRI Administration (email available below). General contact details of provider: https://edirc.repec.org/data/grlseuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.