IDEAS home Printed from https://ideas.repec.org/p/lan/wpaper/26145533.html

Technical appendix to: a new look at variation in employment growth in Canada

Author

Listed:
  • Michele Campolieti
  • Deborah Gefang
  • Gary Koop

Abstract

No abstract is available for this item.

Suggested Citation

  • Michele Campolieti & Deborah Gefang & Gary Koop, 2013. "Technical appendix to: a new look at variation in employment growth in Canada," Working Papers 26145533, Lancaster University Management School, Economics Department.
  • Handle: RePEc:lan:wpaper:26145533
    as

    Download full text from publisher

    File URL: http://www.lancaster.ac.uk/media/lancaster-university/content-assets/documents/lums/economics/working-papers/Gefang2013_2.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Thomas Doan & Robert B. Litterman & Christopher A. Sims, 1983. "Forecasting and Conditional Projection Using Realistic Prior Distributions," NBER Working Papers 1202, National Bureau of Economic Research, Inc.
    2. Gary M. Koop, 2013. "Forecasting with Medium and Large Bayesian VARS," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(2), pages 177-203, March.
    3. repec:ulb:ulbeco:2013/13388 is not listed on IDEAS
    4. Park, Trevor & Casella, George, 2008. "The Bayesian Lasso," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 681-686, June.
    5. Gefang, Deborah, 2014. "Bayesian doubly adaptive elastic-net Lasso for VAR shrinkage," International Journal of Forecasting, Elsevier, vol. 30(1), pages 1-11.
    6. George, Edward I. & Sun, Dongchu & Ni, Shawn, 2008. "Bayesian stochastic search for VAR model restrictions," Journal of Econometrics, Elsevier, vol. 142(1), pages 553-580, January.
    7. Kadiyala, K Rao & Karlsson, Sune, 1997. "Numerical Methods for Estimation and Inference in Bayesian VAR-Models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 12(2), pages 99-132, March-Apr.
    8. Marta Bańbura & Domenico Giannone & Lucrezia Reichlin, 2010. "Large Bayesian vector auto regressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 71-92, January.
    9. Altonji, Joseph G & Ham, John C, 1990. "Variation in Employment Growth in Canada: The Role of External, National, Regional, and Industrial Factors," Journal of Labor Economics, University of Chicago Press, vol. 8(1), pages 198-236, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gary Koop, 2012. "Using VARs and TVP-VARs with Many Macroeconomic Variables," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 4(3), pages 143-167, September.
    2. Koop, Gary & Korobilis, Dimitris & Pettenuzzo, Davide, 2019. "Bayesian compressed vector autoregressions," Journal of Econometrics, Elsevier, vol. 210(1), pages 135-154.
    3. Karlsson, Sune, 2013. "Forecasting with Bayesian Vector Autoregression," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 791-897, Elsevier.
    4. Billio, Monica & Casarin, Roberto & Rossini, Luca, 2019. "Bayesian nonparametric sparse VAR models," Journal of Econometrics, Elsevier, vol. 212(1), pages 97-115.
    5. Gefang, Deborah & Koop, Gary & Poon, Aubrey, 2023. "Forecasting using variational Bayesian inference in large vector autoregressions with hierarchical shrinkage," International Journal of Forecasting, Elsevier, vol. 39(1), pages 346-363.
    6. Roberto Casarin & Fausto Corradin & Francesco Ravazzolo & Nguyen Domenico Sartore & Wing-Keung Wong, 2020. "A Scoring Rule for Factor and Autoregressive Models Under Misspecification," Advances in Decision Sciences, Asia University, Taiwan, vol. 24(2), pages 66-103, June.
    7. Monica Billio & Roberto Casarin & Luca Rossini, 2016. "Bayesian nonparametric sparse seemingly unrelated regression model (SUR)," Working Papers 2016:20, Department of Economics, University of Venice "Ca' Foscari".
    8. Deborah Gefang & Gary Koop & Aubrey Poon, 2019. "Variational Bayesian Inference in Large Vector Autoregressions with Hierarchical Shrinkage," Discussion Papers in Economics 19/05, Division of Economics, School of Business, University of Leicester.
    9. Korobilis, Dimitris, 2016. "Prior selection for panel vector autoregressions," Computational Statistics & Data Analysis, Elsevier, vol. 101(C), pages 110-120.
    10. Gefang, Deborah, 2014. "Bayesian doubly adaptive elastic-net Lasso for VAR shrinkage," International Journal of Forecasting, Elsevier, vol. 30(1), pages 1-11.
    11. Chan, Joshua C.C., 2021. "Minnesota-type adaptive hierarchical priors for large Bayesian VARs," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1212-1226.
    12. Ms. Adina Popescu & Ms. Alina Carare, 2011. "Monetary Policy and Risk-Premium Shocks in Hungary: Results from a Large Bayesian VAR," IMF Working Papers 2011/259, International Monetary Fund.
    13. Koop, Gary & Korobilis, Dimitris, 2010. "Bayesian Multivariate Time Series Methods for Empirical Macroeconomics," Foundations and Trends(R) in Econometrics, now publishers, vol. 3(4), pages 267-358, July.
    14. Dimitris Korobilis, 2013. "Var Forecasting Using Bayesian Variable Selection," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(2), pages 204-230, March.
    15. Joshua C. C. Chan, 2019. "Large Bayesian Vector Autoregressions," CAMA Working Papers 2019-19, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    16. Nicholson, William B. & Matteson, David S. & Bien, Jacob, 2017. "VARX-L: Structured regularization for large vector autoregressions with exogenous variables," International Journal of Forecasting, Elsevier, vol. 33(3), pages 627-651.
    17. Chan, Joshua C.C. & Eisenstat, Eric & Koop, Gary, 2016. "Large Bayesian VARMAs," Journal of Econometrics, Elsevier, vol. 192(2), pages 374-390.
    18. Koop, Gary & Korobilis, Dimitris, 2016. "Model uncertainty in Panel Vector Autoregressive models," European Economic Review, Elsevier, vol. 81(C), pages 115-131.
    19. Gregor Kastner & Florian Huber, 2020. "Sparse Bayesian vector autoregressions in huge dimensions," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(7), pages 1142-1165, November.
    20. Korobilis, Dimitris, 2015. "Prior selection for panel vector autoregressions," 2007 Annual Meeting, July 29-August 1, 2007, Portland, Oregon TN 2015-73, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:lan:wpaper:26145533. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Giorgio Motta (email available below). General contact details of provider: https://edirc.repec.org/data/delanuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.