IDEAS home Printed from https://ideas.repec.org/p/iza/izadps/dp6397.html
   My bibliography  Save this paper

Decomposing the Composition Effect

Author

Listed:
  • Rothe, Christoph

    (University of Mannheim)

Abstract

This paper proposes a decomposition of the composition effect, i.e. the part of the observed between-group difference in the distribution of some economic outcome that can be explained by differences in the distribution of covariates. Our decomposition contains three types of components: (i) the "direct contributions" of each covariate due to between-group differences in the respective marginal distributions, (ii) several “two way” and "higher order" interaction effects due to the interplay between two or more covariates' marginal distributions, and (iii) a "dependence effect" accounting for between-group differences in dependence patterns among the covariates. Our methods can be used to decompose differences in arbitrary distributional features, like quantiles or inequality measures, and allows for general nonlinear relationships between the outcome and the covariates. It can easily be implemented in practice using standard econometric techniques. An application to wage data from the US illustrates the empirical relevance of the decomposition’s components.

Suggested Citation

  • Rothe, Christoph, 2012. "Decomposing the Composition Effect," IZA Discussion Papers 6397, Institute of Labor Economics (IZA).
  • Handle: RePEc:iza:izadps:dp6397
    as

    Download full text from publisher

    File URL: https://docs.iza.org/dp6397.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Victor Chernozhukov & Iván Fernández‐Val & Blaise Melly, 2013. "Inference on Counterfactual Distributions," Econometrica, Econometric Society, vol. 81(6), pages 2205-2268, November.
    2. DiNardo, John & Fortin, Nicole M & Lemieux, Thomas, 1996. "Labor Market Institutions and the Distribution of Wages, 1973-1992: A Semiparametric Approach," Econometrica, Econometric Society, vol. 64(5), pages 1001-1044, September.
    3. Stephen G. Donald & David A. Green & Harry J. Paarsch, 2000. "Differences in Wage Distributions Between Canada and the United States: An Application of a Flexible Estimator of Distribution Functions in the Presence of Covariates," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 67(4), pages 609-633.
    4. José Mata & José A. F. Machado, 2005. "Counterfactual decomposition of changes in wage distributions using quantile regression," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(4), pages 445-465.
    5. Amanda Gosling & Stephen Machin & Costas Meghir, 2000. "The Changing Distribution of Male Wages in the U.K," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 67(4), pages 635-666.
    6. Thomas Lemieux, 2006. "Increasing Residual Wage Inequality: Composition Effects, Noisy Data, or Rising Demand for Skill?," American Economic Review, American Economic Association, vol. 96(3), pages 461-498, June.
    7. Fortin, Nicole & Lemieux, Thomas & Firpo, Sergio, 2011. "Decomposition Methods in Economics," Handbook of Labor Economics, in: O. Ashenfelter & D. Card (ed.), Handbook of Labor Economics, edition 1, volume 4, chapter 1, pages 1-102, Elsevier.
    8. Trivedi, Pravin K. & Zimmer, David M., 2007. "Copula Modeling: An Introduction for Practitioners," Foundations and Trends(R) in Econometrics, now publishers, vol. 1(1), pages 1-111, April.
    9. Christoph Rothe & Dominik Wied, 2013. "Misspecification Testing in a Class of Conditional Distributional Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(501), pages 314-324, March.
    10. Alan S. Blinder, 1973. "Wage Discrimination: Reduced Form and Structural Estimates," Journal of Human Resources, University of Wisconsin Press, vol. 8(4), pages 436-455.
    11. Vaart,A. W. van der, 2000. "Asymptotic Statistics," Cambridge Books, Cambridge University Press, number 9780521784504, September.
    12. Rothe, Christoph, 2010. "Identification of unconditional partial effects in nonseparable models," Economics Letters, Elsevier, vol. 109(3), pages 171-174, December.
    13. Melly, Blaise, 2005. "Decomposition of differences in distribution using quantile regression," Labour Economics, Elsevier, vol. 12(4), pages 577-590, August.
    14. David H. Autor & Lawrence F. Katz & Melissa S. Kearney, 2006. "The Polarization of the U.S. Labor Market," American Economic Review, American Economic Association, vol. 96(2), pages 189-194, May.
    15. Joseph G. Altonji & Prashant Bharadwaj & Fabian Lange, 2012. "Changes in the Characteristics of American Youth: Implications for Adult Outcomes," Journal of Labor Economics, University of Chicago Press, vol. 30(4), pages 783-828.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Boris Kaiser, 2016. "Decomposing differences in arithmetic means: a doubly robust estimation approach," Empirical Economics, Springer, vol. 50(3), pages 873-899, May.
    2. Domenico Depalo & Raffaela Giordano & Evangelia Papapetrou, 2015. "Public–private wage differentials in euro-area countries: evidence from quantile decomposition analysis," Empirical Economics, Springer, vol. 49(3), pages 985-1015, November.
    3. Jan Eeckhout & Roberto Pinheiro & Kurt Schmidheiny, 2014. "Spatial Sorting," Journal of Political Economy, University of Chicago Press, vol. 122(3), pages 554-620.
    4. Ghosh, Pallab Kumar, 2014. "The contribution of human capital variables to changes in the wage distribution function," Labour Economics, Elsevier, vol. 28(C), pages 58-69.
    5. Thomschke, Lorenz, 2015. "Changes in the distribution of rental prices in Berlin," Regional Science and Urban Economics, Elsevier, vol. 51(C), pages 88-100.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christoph Rothe, 2012. "Partial Distributional Policy Effects," Econometrica, Econometric Society, vol. 80(5), pages 2269-2301, September.
    2. Ghosh, Pallab Kumar, 2014. "The contribution of human capital variables to changes in the wage distribution function," Labour Economics, Elsevier, vol. 28(C), pages 58-69.
    3. Victor Chernozhukov & Iván Fernández‐Val & Blaise Melly, 2013. "Inference on Counterfactual Distributions," Econometrica, Econometric Society, vol. 81(6), pages 2205-2268, November.
    4. Fortin, Nicole & Lemieux, Thomas & Firpo, Sergio, 2011. "Decomposition Methods in Economics," Handbook of Labor Economics, in: O. Ashenfelter & D. Card (ed.), Handbook of Labor Economics, edition 1, volume 4, chapter 1, pages 1-102, Elsevier.
    5. Daniel Baumgarten & Gabriel Felbermayr & Sybille Lehwald, 2020. "Dissecting Between‐Plant and Within‐Plant Wage Dispersion: Evidence from Germany," Industrial Relations: A Journal of Economy and Society, Wiley Blackwell, vol. 59(1), pages 85-122, January.
    6. Philippe Van Kerm & Seunghee Yu & Chung Choe, 2016. "Decomposing quantile wage gaps: a conditional likelihood approach," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 65(4), pages 507-527, August.
    7. Trinh Thi, Huong & Simioni, Michel & Thomas-Agnan, Christine, 2018. "Decomposition of changes in the consumption of macronutrients in Vietnam between 2004 and 2014," Economics & Human Biology, Elsevier, vol. 31(C), pages 259-275.
    8. Pallab Ghosh & Jae Lee, 2016. "Decomposition of Changes in Korean Wage Inequality, 1998–2007," Journal of Labor Research, Springer, vol. 37(1), pages 1-28, March.
    9. Roshchin, Sergey & Yemelina, Natalya, 2021. "Gender wage gap decomposition methods: Comparative analysis," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 62, pages 5-31.
    10. Sergio P. Firpo & Nicole M. Fortin & Thomas Lemieux, 2018. "Decomposing Wage Distributions Using Recentered Influence Function Regressions," Econometrics, MDPI, vol. 6(2), pages 1-40, May.
    11. Zhang, Lei & Yi, Yimin, 2018. "What contributes to the rising house prices in Beijing? A decomposition approach," Journal of Housing Economics, Elsevier, vol. 41(C), pages 72-84.
    12. Rothe, Christoph, 2010. "Nonparametric estimation of distributional policy effects," Journal of Econometrics, Elsevier, vol. 155(1), pages 56-70, March.
    13. Pallab Kumar Ghosh & Jae Yoon Lee, 2016. "Decomposition of Changes in Korean Wage Inequality, 1998–2007," Journal of Labor Research, Springer, vol. 37(1), pages 1-28, March.
    14. Sloczynski, Tymon, 2013. "Population Average Gender Effects," IZA Discussion Papers 7315, Institute of Labor Economics (IZA).
    15. Sonja C. Kassenboehmer & Mathias G. Sinning, 2014. "Distributional Changes in the Gender Wage Gap," ILR Review, Cornell University, ILR School, vol. 67(2), pages 335-361, April.
    16. Domenico Depalo & Raffaela Giordano & Evangelia Papapetrou, 2015. "Public–private wage differentials in euro-area countries: evidence from quantile decomposition analysis," Empirical Economics, Springer, vol. 49(3), pages 985-1015, November.
    17. Ana Fernandes & Martin Huber & Giannina Vaccaro, 2021. "Gender differences in wage expectations," PLOS ONE, Public Library of Science, vol. 16(6), pages 1-24, June.
    18. Asplund, Rita, 2009. "Sources of Increased Wage Differentials in the Finnish Private Sector," Discussion Papers 1206, The Research Institute of the Finnish Economy.
    19. Richey, Jeremiah & Rosburg, Alicia, 2016. "Understanding intergenerational economic mobility by decomposing joint distributions," MPRA Paper 72665, University Library of Munich, Germany.
    20. Jeremiah Richey & Alicia Rosburg, 2018. "Decomposing economic mobility transition matrices," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 33(1), pages 91-108, January.

    More about this item

    Keywords

    counterfactual distribution; decomposition methods;

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C18 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Methodolical Issues: General
    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
    • J31 - Labor and Demographic Economics - - Wages, Compensation, and Labor Costs - - - Wage Level and Structure; Wage Differentials

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:iza:izadps:dp6397. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Holger Hinte (email available below). General contact details of provider: https://edirc.repec.org/data/izaaade.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.