IDEAS home Printed from https://ideas.repec.org/p/isu/genres/38400.html
   My bibliography  Save this paper

Combinatorial Innovation and Research Strategies: Theoretical Framework and Empirical Evidence from Two Centuries of Patent Data

Author

Listed:
  • Clancy, Matthew

Abstract

I develop a knowledge production function where new ideas are built from combinations of pre- existing elements. Parameters governing the connections between these elements stochastically determine whether a new combination yields a useful idea. Researchers use Bayesian reasoning to update their beliefs about the value of these parameters and thereby improve their selection of viable research projects. The optimal research strategy is a mix of harvesting the ideas that look best, given what researchers currently believe, and performing exploratory research in order to obtain better information about the unknown parameters. Moreover, this model predicts research productivity in any one field declines over time if new elements for combination or new information about underlying parameters are not discovered. I investigate some of these properties using a large dataset, consisting of all US utility patents granted from 1836 to 2012. I use fine-grained technological classifications to show that optimal research in my model is consistent with actual innovation outcomes, and that the model can be used to improve the forecasting of patent activity in different technology classes.

Suggested Citation

  • Clancy, Matthew, 2015. "Combinatorial Innovation and Research Strategies: Theoretical Framework and Empirical Evidence from Two Centuries of Patent Data," Staff General Research Papers Archive 38400, Iowa State University, Department of Economics.
  • Handle: RePEc:isu:genres:38400
    as

    Download full text from publisher

    File URL: http://www2.econ.iastate.edu/papers/p18400-2015-01-22.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Daron Acemoglu & Philippe Aghion & Leonardo Bursztyn & David Hemous, 2012. "The Environment and Directed Technical Change," American Economic Review, American Economic Association, vol. 102(1), pages 131-166, February.
    2. Matthew S. Clancy & GianCarlo Moschini, 2013. "Incentives for Innovation: Patents, Prizes, and Research Contracts," Applied Economic Perspectives and Policy, Agricultural and Applied Economics Association, vol. 35(2), pages 206-241.
    3. Hall, B. & Jaffe, A. & Trajtenberg, M., 2001. "The NBER Patent Citations Data File: Lessons, Insights and Methodological Tools," Papers 2001-29, Tel Aviv.
    4. Jovanovic, Boyan & Rob, Rafael, 1990. "Long Waves and Short Waves: Growth through Intensive and Extensive Search," Econometrica, Econometric Society, vol. 58(6), pages 1391-1409, November.
    5. repec:fth:harver:1473 is not listed on IDEAS
    6. Zvi Griliches, 1998. "Patent Statistics as Economic Indicators: A Survey," NBER Chapters,in: R&D and Productivity: The Econometric Evidence, pages 287-343 National Bureau of Economic Research, Inc.
    7. Martin L. Weitzman, 1998. "Recombinant Growth," The Quarterly Journal of Economics, Oxford University Press, vol. 113(2), pages 331-360.
    8. Allen,Robert C., 2009. "The British Industrial Revolution in Global Perspective," Cambridge Books, Cambridge University Press, number 9780521868273.
    9. Schilling, Melissa A. & Green, Elad, 2011. "Recombinant search and breakthrough idea generation: An analysis of high impact papers in the social sciences," Research Policy, Elsevier, vol. 40(10), pages 1321-1331.
    10. Auerswald, Philip & Kauffman, Stuart & Lobo, Jose & Shell, Karl, 2000. "The production recipes approach to modeling technological innovation: An application to learning by doing," Journal of Economic Dynamics and Control, Elsevier, vol. 24(3), pages 389-450, March.
    11. Fleming, Lee & Sorenson, Olav, 2001. "Technology as a complex adaptive system: evidence from patent data," Research Policy, Elsevier, vol. 30(7), pages 1019-1039, August.
    12. Nemet, Gregory F. & Johnson, Evan, 2012. "Do important inventions benefit from knowledge originating in other technological domains?," Research Policy, Elsevier, vol. 41(1), pages 190-200.
    13. Nemet, Gregory F., 2012. "Inter-technology knowledge spillovers for energy technologies," Energy Economics, Elsevier, vol. 34(5), pages 1259-1270.
    14. Schoenmakers, Wilfred & Duysters, Geert, 2010. "The technological origins of radical inventions," Research Policy, Elsevier, vol. 39(8), pages 1051-1059, October.
    15. Samuel S. Kortum, 1997. "Research, Patenting, and Technological Change," Econometrica, Econometric Society, vol. 65(6), pages 1389-1420, November.
    16. James Bessen & Michael J. Meurer, 2008. "Introduction to Patent Failure: How Judges, Bureaucrats, and Lawyers Put Innovators at Risk," Introductory Chapters,in: Patent Failure: How Judges, Bureaucrats, and Lawyers Put Innovators at Risk Princeton University Press.
    17. Charles I. Jones, 2005. "The Shape of Production Functions and the Direction of Technical Change," The Quarterly Journal of Economics, Oxford University Press, vol. 120(2), pages 517-549.
    18. Kauffman, Stuart & Lobo, Jose & Macready, William G., 2000. "Optimal search on a technology landscape," Journal of Economic Behavior & Organization, Elsevier, vol. 43(2), pages 141-166, October.
    19. Lee Fleming, 2001. "Recombinant Uncertainty in Technological Search," Management Science, INFORMS, vol. 47(1), pages 117-132, January.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    innovation; patents;

    JEL classification:

    • O31 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Innovation and Invention: Processes and Incentives
    • O34 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Intellectual Property and Intellectual Capital

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:isu:genres:38400. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Curtis Balmer). General contact details of provider: http://edirc.repec.org/data/deiasus.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.