IDEAS home Printed from https://ideas.repec.org/p/inn/wpaper/2016-28.html
   My bibliography  Save this paper

Tricks for improving non-homogeneous regression for probabilistic precipitation forecasts: Perfect predictions, heavy tails, and link functions

Author

Listed:
  • Manuel Gebetsberger
  • Jakob W. Messner
  • Georg J. Mayr
  • Achim Zeileis

Abstract

Raw ensemble forecasts display large errors in predicting precipitation amounts and its forecast uncertainty, especially in mountainous regions where local effects are often not captured. Therefore, statistical post-processing is typically applied to obtain automatically corrected weather forecasts where precipitation represents one of the most challenging quantities. This study applies the non-homogenous regression framework as a start-of-the-art ensemble post-processing technique to predict a full forecast distribution and improves its forecast performance with three statistical tricks. First of all, a novel split-type approach effectively accounts for perfect ensemble predictions that can occur. Additionally, the statistical model assumes a censored logistic distribution to deal with the heavy tails of precipitation amounts. Finally, the optimization of regression coefficients for the scale parameter is investigated with suitable link-functions. These three refinements are tested for stations in the European Alps for lead-times from +24h to +48h and accumulation periods of 24 and 6 hours. Results highlight an improvement due to a combination of the three statistical tricks against the default post-processing method which does not account for perfect ensemble predictions. Probabilistic forecasts for precipitation amounts as well as the probability of precipitation events could be improved, especially for 6 hour sums.

Suggested Citation

  • Manuel Gebetsberger & Jakob W. Messner & Georg J. Mayr & Achim Zeileis, 2016. "Tricks for improving non-homogeneous regression for probabilistic precipitation forecasts: Perfect predictions, heavy tails, and link functions," Working Papers 2016-28, Faculty of Economics and Statistics, Universität Innsbruck.
  • Handle: RePEc:inn:wpaper:2016-28
    as

    Download full text from publisher

    File URL: https://www2.uibk.ac.at/downloads/c4041030/wpaper/2016-28.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Thordis L. Thorarinsdottir & Tilmann Gneiting, 2010. "Probabilistic forecasts of wind speed: ensemble model output statistics by using heteroscedastic censored regression," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 173(2), pages 371-388, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Manuel Gebetsberger & Jakob W. Messner & Georg J. Mayr & Achim Zeileis, 2017. "Estimation methods for non-homogeneous regression models: Minimum continuous ranked probability score vs. maximum likelihood," Working Papers 2017-23, Faculty of Economics and Statistics, Universität Innsbruck.
    2. Zhao, Jing & Guo, Zhen-Hai & Su, Zhong-Yue & Zhao, Zhi-Yuan & Xiao, Xia & Liu, Feng, 2016. "An improved multi-step forecasting model based on WRF ensembles and creative fuzzy systems for wind speed," Applied Energy, Elsevier, vol. 162(C), pages 808-826.
    3. Mayer, David G. & Chandra, Kerri A. & Burnett, Jolyon R., 2019. "Improved crop forecasts for the Australian macadamia industry from ensemble models," Agricultural Systems, Elsevier, vol. 173(C), pages 519-523.
    4. Sándor Baran & Patrícia Szokol & Marianna Szabó, 2021. "Truncated generalized extreme value distribution‐based ensemble model output statistics model for calibration of wind speed ensemble forecasts," Environmetrics, John Wiley & Sons, Ltd., vol. 32(6), September.
    5. Jakob W. Messner & Achim Zeileis & Jochen Broecker & Georg J. Mayr, 2013. "Improved Probabilistic Wind Power Forecasts with an Inverse Power Curve Transformation and Censored Regression," Working Papers 2013-01, Faculty of Economics and Statistics, Universität Innsbruck.
    6. Michaël Zamo & Liliane Bel & Olivier Mestre, 2021. "Sequential aggregation of probabilistic forecasts—Application to wind speed ensemble forecasts," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(1), pages 202-225, January.
    7. Heinermann, Justin & Kramer, Oliver, 2016. "Machine learning ensembles for wind power prediction," Renewable Energy, Elsevier, vol. 89(C), pages 671-679.
    8. Sebastian Lerch & Sándor Baran, 2017. "Similarity-based semilocal estimation of post-processing models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(1), pages 29-51, January.
    9. Iversen, Emil B. & Morales, Juan M. & Møller, Jan K. & Madsen, Henrik, 2016. "Short-term probabilistic forecasting of wind speed using stochastic differential equations," International Journal of Forecasting, Elsevier, vol. 32(3), pages 981-990.
    10. Lei Zhang & Lun Xie & Qinkai Han & Zhiliang Wang & Chen Huang, 2020. "Probability Density Forecasting of Wind Speed Based on Quantile Regression and Kernel Density Estimation," Energies, MDPI, vol. 13(22), pages 1-24, November.
    11. Jakob W. Messner & Georg J. Mayr & Achim Zeileis, 2016. "Non-homogeneous boosting for predictor selection in ensemble post-processing," Working Papers 2016-04, Faculty of Economics and Statistics, Universität Innsbruck.
    12. Pierre-Julien Trombe & Pierre Pinson & Henrik Madsen, 2012. "A General Probabilistic Forecasting Framework for Offshore Wind Power Fluctuations," Energies, MDPI, vol. 5(3), pages 1-37, March.
    13. Thorey, J. & Chaussin, C. & Mallet, V., 2018. "Ensemble forecast of photovoltaic power with online CRPS learning," International Journal of Forecasting, Elsevier, vol. 34(4), pages 762-773.
    14. Baran, Sándor & Lerch, Sebastian, 2018. "Combining predictive distributions for the statistical post-processing of ensemble forecasts," International Journal of Forecasting, Elsevier, vol. 34(3), pages 477-496.
    15. Mário Fernando De Sousa & Helton Saulo & Víctor Leiva & Paulo Scalco, 2018. "On Some Properties Of A New Asymmetry-Based Tobit Model," Anais do XLIV Encontro Nacional de Economia [Proceedings of the 44th Brazilian Economics Meeting] 129, ANPEC - Associação Nacional dos Centros de Pós-Graduação em Economia [Brazilian Association of Graduate Programs in Economics].
    16. Jakob W. Messner & Georg J. Mayr & Daniel S. Wilks & Achim Zeileis, 2013. "Extending Extended Logistic Regression for Ensemble Post-Processing: Extended vs. Separate vs. Ordered vs. Censored," Working Papers 2013-32, Faculty of Economics and Statistics, Universität Innsbruck.
    17. Baran, Sándor, 2014. "Probabilistic wind speed forecasting using Bayesian model averaging with truncated normal components," Computational Statistics & Data Analysis, Elsevier, vol. 75(C), pages 227-238.
    18. Chen, Shu-Hua & Yang, Shu-Chih & Chen, Chih-Ying & van Dam, C.P. & Cooperman, Aubryn & Shiu, Henry & MacDonald, Clinton & Zack, John, 2019. "Application of bias corrections to improve hub-height ensemble wind forecasts over the Tehachapi Wind Resource Area," Renewable Energy, Elsevier, vol. 140(C), pages 281-291.
    19. Yan, Jie & Liu, Yongqian & Han, Shuang & Wang, Yimei & Feng, Shuanglei, 2015. "Reviews on uncertainty analysis of wind power forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1322-1330.
    20. Reto Stauffer & Jakob W. Messner & Georg J. Mayr & Nikolaus Umlauf & Achim Zeileis, 2016. "Ensemble Post-Processing of Daily Precipitation Sums over Complex Terrain Using Censored High-Resolution Standardized Anomalies," Working Papers 2016-21, Faculty of Economics and Statistics, Universität Innsbruck.

    More about this item

    Keywords

    non-homogeneous regression; censored logistic distribution; log-link; probabilistic precipitation forecasts; operational forecasting;
    All these keywords.

    JEL classification:

    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • Q50 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inn:wpaper:2016-28. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Janette Walde (email available below). General contact details of provider: https://edirc.repec.org/data/fuibkat.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.