IDEAS home Printed from https://ideas.repec.org/p/hum/wpaper/sfb649dp2005-020.html
   My bibliography  Save this paper

A Dynamic Semiparametric Factor Model for Implied Volatility String Dynamics

Author

Listed:
  • Matthias Fengler
  • Wolfgang Härdle
  • Enno Mammen

Abstract

A primary goal in modelling the implied volatility surface (IVS) for pricing and hedging aims at reducing complexity. For this purpose one fits the IVS each day and applies a principal component analysis using a functional norm. This approach, however, neglects the degenerated string structure of the implied volatility data and may result in a modelling bias. We propose a dynamic semiparametric factor model (DSFM), which approximates the IVS in a finite dimensional function space. The key feature is that we only fit in the local neighborhood of the design points. Our approach is a combination of methods from functional principal component analysis and backfitting techniques for additive models. The model is found to have an approximate 10% better performance than a sticky moneyness model. Finally, based on the DSFM, we devise a generalized vega-hedging strategy for exotic options that are priced in the local volatility framework. The generalized vega-hedging extends the usual approaches employed in the local volatility framework.

Suggested Citation

  • Matthias Fengler & Wolfgang Härdle & Enno Mammen, 2005. "A Dynamic Semiparametric Factor Model for Implied Volatility String Dynamics," SFB 649 Discussion Papers SFB649DP2005-020, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
  • Handle: RePEc:hum:wpaper:sfb649dp2005-020
    as

    Download full text from publisher

    File URL: http://sfb649.wiwi.hu-berlin.de/papers/pdf/SFB649DP2005-020.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Yacine Aït-Sahalia & Andrew W. Lo, 1998. "Nonparametric Estimation of State-Price Densities Implicit in Financial Asset Prices," Journal of Finance, American Finance Association, vol. 53(2), pages 499-547, April.
    2. Rama Cont & Jose da Fonseca, 2002. "Dynamics of implied volatility surfaces," Quantitative Finance, Taylor & Francis Journals, vol. 2(1), pages 45-60.
    3. Jianqing Fan & Qiwei Yao & Zongwu Cai, 2003. "Adaptive varying-coefficient linear models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(1), pages 57-80.
    4. Toby Daglish & John Hull & Wulin Suo, 2007. "Volatility surfaces: theory, rules of thumb, and empirical evidence," Quantitative Finance, Taylor & Francis Journals, vol. 7(5), pages 507-524.
    5. Matthias Fengler & Wolfgang Härdle & Christophe Villa, 2003. "The Dynamics of Implied Volatilities: A Common Principal Components Approach," Review of Derivatives Research, Springer, pages 179-202.
    6. Stein, Elias M & Stein, Jeremy C, 1991. "Stock Price Distributions with Stochastic Volatility: An Analytic Approach," Review of Financial Studies, Society for Financial Studies, vol. 4(4), pages 727-752.
    7. Ait-Sahalia, Yacine & Duarte, Jefferson, 2003. "Nonparametric option pricing under shape restrictions," Journal of Econometrics, Elsevier, vol. 116(1-2), pages 9-47.
    8. Das, Sanjiv Ranjan & Sundaram, Rangarajan K., 1999. "Of Smiles and Smirks: A Term Structure Perspective," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 34(02), pages 211-239, June.
    9. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    10. Ait-Sahalia, Yacine & Wang, Yubo & Yared, Francis, 2001. "Do option markets correctly price the probabilities of movement of the underlying asset?," Journal of Econometrics, Elsevier, vol. 102(1), pages 67-110, May.
    11. Broadie, Mark & Detemple, Jerome & Ghysels, Eric & Torres, Olivier, 2000. "American options with stochastic dividends and volatility: A nonparametric investigation," Journal of Econometrics, Elsevier, pages 53-92.
    12. Aït-Sahalia, Yacine. & Bickel, Peter J. & Stoker, Thomas M., 1994. "Goodness-of-fit tests for regression using kernel methods," Working papers 3747-94., Massachusetts Institute of Technology (MIT), Sloan School of Management.
    13. Bates, David S, 1996. "Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in Deutsche Mark Options," Review of Financial Studies, Society for Financial Studies, vol. 9(1), pages 69-107.
    14. Joshua Rosenberg, 1999. "Implied Volatility Functions: A Reprise," New York University, Leonard N. Stern School Finance Department Working Paper Seires 99-027, New York University, Leonard N. Stern School of Business-.
    15. Harrison, J. Michael & Kreps, David M., 1979. "Martingales and arbitrage in multiperiod securities markets," Journal of Economic Theory, Elsevier, vol. 20(3), pages 381-408, June.
    16. M. A. H. Dempster & D. G. Richards, 2000. "Pricing American Options Fitting the Smile," Mathematical Finance, Wiley Blackwell, vol. 10(2), pages 157-177.
    17. Broadie, Mark & Detemple, Jerome & Ghysels, Eric & Torres, Olivier, 2000. "Nonparametric estimation of American options' exercise boundaries and call prices," Journal of Economic Dynamics and Control, Elsevier, vol. 24(11-12), pages 1829-1857, October.
    18. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    19. Fengler, Matthias R. & Wang, Qihua, 2003. "Fitting the Smile Revisited: A Least Squares Kernel Estimator for the Implied Volatility Surface," SFB 373 Discussion Papers 2003,25, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    20. P. Balland, 2002. "Deterministic implied volatility models," Quantitative Finance, Taylor & Francis Journals, vol. 2(1), pages 31-44.
    21. George Skiadopoulos & Stewart Hodges & Les Clewlow, 2000. "The Dynamics of the S&P 500 Implied Volatility Surface," Review of Derivatives Research, Springer, vol. 3(3), pages 263-282, October.
    22. Oliver Linton & Gregory Connor, 2000. "Semiparametric Estimation of a Characteristic-Based Factor Model of Stock Returns," FMG Discussion Papers dp346, Financial Markets Group.
    23. Hull, John C & White, Alan D, 1987. " The Pricing of Options on Assets with Stochastic Volatilities," Journal of Finance, American Finance Association, vol. 42(2), pages 281-300, June.
    24. Bates, David S., 2000. "Post-'87 crash fears in the S&P 500 futures option market," Journal of Econometrics, Elsevier, vol. 94(1-2), pages 181-238.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Michal Benko & Wolfgang Härdle & Alois Kneip, 2006. "Common Functional Principal Components," SFB 649 Discussion Papers SFB649DP2006-010, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    2. Szymon Borak & Matthias Fengler & Wolfgang Härdle, 2005. "DSFM fitting of Implied Volatility Surfaces," SFB 649 Discussion Papers SFB649DP2005-022, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    3. Lam, Clifford & Yao, Qiwei & Bathia, Neil, 2011. "Estimation of latent factors for high-dimensional time series," LSE Research Online Documents on Economics 31549, London School of Economics and Political Science, LSE Library.
    4. Ralf Brüggemann & Wolfgang Härdle & Julius Mungo & Carsten Trenkler, 2006. "VAR Modeling for Dynamic Semiparametric Factors of Volatility Strings," SFB 649 Discussion Papers SFB649DP2006-011, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    5. Stefan Trück & Wolfgang Härdle & Rafal Weron, 2012. "The relationship between spot and futures CO2 emission allowance prices in the EU-ETS," HSC Research Reports HSC/12/02, Hugo Steinhaus Center, Wroclaw University of Technology.
    6. Wolfgang Karl Härdle,Piotr Majer & Melanie Schienle, 2012. "Yield Curve Modeling and Forecasting using Semiparametric Factor Dynamics," SFB 649 Discussion Papers SFB649DP2012-048, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    7. Härdle, Wolfgang & Hlávka, Zdenek, 2009. "Dynamics of state price densities," Journal of Econometrics, Elsevier, vol. 150(1), pages 1-15, May.
    8. Liu, Xialu & Xiao, Han & Chen, Rong, 2016. "Convolutional autoregressive models for functional time series," Journal of Econometrics, Elsevier, vol. 194(2), pages 263-282.

    More about this item

    Keywords

    Smile; local volatility; generalized additive model; backfitting; functional principal component analysis;

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hum:wpaper:sfb649dp2005-020. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (RDC-Team). General contact details of provider: http://edirc.repec.org/data/sohubde.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.