IDEAS home Printed from https://ideas.repec.org/a/kap/revdev/v3y2000i3p263-282.html
   My bibliography  Save this article

The Dynamics of the S&P 500 Implied Volatility Surface

Author

Listed:
  • George Skiadopoulos
  • Stewart Hodges
  • Les Clewlow

Abstract

This empirical study is motivated by the literature on “smile-consistent” arbitrage pricing with stochastic volatility. We investigate the number and shape of shocks that move implied volatility smiles and surfaces by applying Principal Components Analysis. Two components are identified under a variety of criteria. Subsequently, we develop a “Procrustes” type rotation in order to interpret the retained components. The results have implications for both option pricing and hedging and for the economics of option pricing. Copyright Kluwer Academic Publishers 2000

Suggested Citation

  • George Skiadopoulos & Stewart Hodges & Les Clewlow, 2000. "The Dynamics of the S&P 500 Implied Volatility Surface," Review of Derivatives Research, Springer, vol. 3(3), pages 263-282, October.
  • Handle: RePEc:kap:revdev:v:3:y:2000:i:3:p:263-282
    DOI: 10.1023/A:1009642705121
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1023/A:1009642705121
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Johnson, Herb & Shanno, David, 1987. "Option Pricing when the Variance Is Changing," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 22(02), pages 143-151, June.
    2. Schmalensee, Richard & Trippi, Robert R, 1978. "Common Stock Volatility Expectations Implied by Option Premia," Journal of Finance, American Finance Association, vol. 33(1), pages 129-147, March.
    3. Merton, Robert C., 1976. "Option pricing when underlying stock returns are discontinuous," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 125-144.
    4. Bernard Dumas & Jeff Fleming & Robert E. Whaley, 1998. "Implied Volatility Functions: Empirical Tests," Journal of Finance, American Finance Association, vol. 53(6), pages 2059-2106, December.
    5. Das, Sanjiv Ranjan & Sundaram, Rangarajan K., 1999. "Of Smiles and Smirks: A Term Structure Perspective," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 34(02), pages 211-239, June.
    6. David Heath & Robert Jarrow & Andrew Morton, 2008. "Bond Pricing And The Term Structure Of Interest Rates: A New Methodology For Contingent Claims Valuation," World Scientific Book Chapters,in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 13, pages 277-305 World Scientific Publishing Co. Pte. Ltd..
    7. Louis O. Scott, 1997. "Pricing Stock Options in a Jump‐Diffusion Model with Stochastic Volatility and Interest Rates: Applications of Fourier Inversion Methods," Mathematical Finance, Wiley Blackwell, vol. 7(4), pages 413-426.
    8. Wiggins, James B., 1987. "Option values under stochastic volatility: Theory and empirical estimates," Journal of Financial Economics, Elsevier, vol. 19(2), pages 351-372, December.
    9. Scott, Louis O., 1987. "Option Pricing when the Variance Changes Randomly: Theory, Estimation, and an Application," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 22(04), pages 419-438, December.
    10. Bates, David S, 1996. "Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in Deutsche Mark Options," Review of Financial Studies, Society for Financial Studies, vol. 9(1), pages 69-107.
    11. Hull, John C & White, Alan D, 1987. " The Pricing of Options on Assets with Stochastic Volatilities," Journal of Finance, American Finance Association, vol. 42(2), pages 281-300, June.
    12. Wayne Velicer, 1976. "Determining the number of components from the matrix of partial correlations," Psychometrika, Springer;The Psychometric Society, vol. 41(3), pages 321-327, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Si & Zhou, Zhen & Li, Shenghong, 2016. "An efficient estimate and forecast of the implied volatility surface: A nonlinear Kalman filter approach," Economic Modelling, Elsevier, vol. 58(C), pages 655-664.
    2. Szymon Borak & Matthias Fengler & Wolfgang Härdle, 2005. "DSFM fitting of Implied Volatility Surfaces," SFB 649 Discussion Papers SFB649DP2005-022, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    3. Bernales, Alejandro & Guidolin, Massimo, 2014. "Can we forecast the implied volatility surface dynamics of equity options? Predictability and economic value tests," Journal of Banking & Finance, Elsevier, vol. 46(C), pages 326-342.
    4. Joshua Rosenberg, 1999. "Implied Volatility Functions: A Reprise," New York University, Leonard N. Stern School Finance Department Working Paper Seires 99-027, New York University, Leonard N. Stern School of Business-.
    5. Francesco Audrino & Dominik Colangelo, 2009. "Option trading strategies based on semi-parametric implied volatility surface prediction," University of St. Gallen Department of Economics working paper series 2009 2009-24, Department of Economics, University of St. Gallen.
    6. Bernd Engelmann & Matthias Fengler & Morten Nalholm & Peter Schwendner, 2006. "Static versus dynamic hedges: an empirical comparison for barrier options," Review of Derivatives Research, Springer, vol. 9(3), pages 239-264, November.
    7. George Skiadopoulos, 2004. "The Greek implied volatility index: construction and properties," Applied Financial Economics, Taylor & Francis Journals, vol. 14(16), pages 1187-1196.
    8. Andrew Carverhill & Terry Cheuk & Sigurd Dyrting, 2009. "The smirk in the S&P500 futures options prices: a linearized factor analysis," Review of Derivatives Research, Springer, vol. 12(2), pages 109-139, July.
    9. Fengler, Matthias R. & Härdle, Wolfgang & Mammen, Enno, 2003. "Implied volatility string dynamics," SFB 373 Discussion Papers 2003,54, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    10. Peter Christoffersen & Steven Heston & Kris Jacobs, 2009. "The Shape and Term Structure of the Index Option Smirk: Why Multifactor Stochastic Volatility Models Work So Well," Management Science, INFORMS, vol. 55(12), pages 1914-1932, December.
    11. Fengler, Matthias R. & Wang, Qihua, 2003. "Fitting the Smile Revisited: A Least Squares Kernel Estimator for the Implied Volatility Surface," SFB 373 Discussion Papers 2003,25, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    12. Matthias Fengler & Wolfgang Härdle & Enno Mammen, 2005. "A Dynamic Semiparametric Factor Model for Implied Volatility String Dynamics," SFB 649 Discussion Papers SFB649DP2005-020, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:revdev:v:3:y:2000:i:3:p:263-282. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Rebekah McClure). General contact details of provider: http://www.springer.com .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.