IDEAS home Printed from https://ideas.repec.org/p/ehl/lserod/5885.html

Adaptive varying co-efficient linear models

Author

Listed:
  • Fan, Jianqing
  • Yao, Qiwei
  • Cai, Zongwu

Abstract

Varying-coefficient linear models arise from multivariate nonparametric regression, nonlinear time series modelling and forecasting, functional data analysis, longitudinal data analysis, and others. It has been a common practice to assume that the vary-coefficients are functions of a given variable which is often called an index. A frequently asked question is which variable should be used as the index. In this paper, we explore the class of the varying-coefficient linear models in which the index is unknown and is estimated as a linear combination of regression and/or other variables. This will enlarge the modelling capacity substantially. We search for the index such that the derived varying-coefficient model provides the best approximation to the underlying unknown multi-dimensional regression function in the least square sense. The search is implemented through the newly proposed hybrid backfitting algorithm. The core of the algorithm is the alternative iteration between estimating the index through a one-step scheme and estimating coefficient functions through a one-dimensional local linear smoothing. The generalised cross-validation method for choosing bandwidth is efficiently incorporated into the algorithm. The locally significant variables are selected in terms of the combined use of t-statistic and Akaike information criterion. We further extend the algorithm for the models with two indices. Simulation shows that the proposed methodology has appreciable flexibility to model complex multivariate nonlinear structure and is practically feasible with average modern computers. The methods are further illustrated through the Canadian mink-muskrat data in 1925-1994 and the pound/dollar exchange rates in 1974-1983.

Suggested Citation

  • Fan, Jianqing & Yao, Qiwei & Cai, Zongwu, 2003. "Adaptive varying co-efficient linear models," LSE Research Online Documents on Economics 5885, London School of Economics and Political Science, LSE Library.
  • Handle: RePEc:ehl:lserod:5885
    as

    Download full text from publisher

    File URL: https://researchonline.lse.ac.uk/id/eprint/5885/
    File Function: Open access version.
    Download Restriction: no
    ---><---

    Other versions of this item:

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;

    JEL classification:

    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ehl:lserod:5885. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: LSERO Manager (email available below). General contact details of provider: https://edirc.repec.org/data/lsepsuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.