IDEAS home Printed from https://ideas.repec.org/p/fmg/fmgdps/dp430.html
   My bibliography  Save this paper

Revisited Multi-moment Approximate Option

Author

Listed:
  • Bogdan Negrea
  • Bertrand Maillet
  • Emmanuel Jurczenko

Abstract

After the seminal paper of Jarrow and Rudd (1982), several authors have proposed to use different statistical series expansion to price options when the risk-neutral density is asymmetric and leptokurtic. Amongst them, one can distinguish the Gram-Charlier Type A series expansion (Corrado and Su, 1996-b and 1997-b), the log-normal Gram-Charlier series expansion (Jarrow and Rudd, 1982) and the Edgeworth series expansion (Rubinstein, 1998). The purpose of this paper is to compare these different multi-moment approximate option pricing models. We first re-call the link between the risk-neutral density and moments in a general statistical series expansion framework under the martingale hypothesis. We then derive analytical formulae for several four-moment approximate option pricing models, namely, the Jarrow and Rudd (1982), Corrado and Su (1996-b and 1997-b) and Rubinstein (1998) models. We investigate in particular the conditions that ensure the respect of the martingale re-striction (see Longsta ., 1995) and consequently revisit the approximate option pricing models under study. We also get for these models the analytical expressions of implied probability densities, implied volatility smile functions and several hedging parameters of interest.

Suggested Citation

  • Bogdan Negrea & Bertrand Maillet & Emmanuel Jurczenko, 2002. "Revisited Multi-moment Approximate Option," FMG Discussion Papers dp430, Financial Markets Group.
  • Handle: RePEc:fmg:fmgdps:dp430
    as

    Download full text from publisher

    File URL: http://www.lse.ac.uk/fmg/workingPapers/discussionPapers/fmgdps/dp430.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Dimitris Flamouris & Daniel Giamouridis, 2002. "Estimating Implied PDFs From American Options on Futures: A New Semiparametric Approach," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 22(1), pages 1-30, January.
    2. Charles J. Corrado & Tie Su, 1996. "Skewness And Kurtosis In S&P 500 Index Returns Implied By Option Prices," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 19(2), pages 175-192, June.
    3. Yacine Aït-Sahalia & Andrew W. Lo, 1998. "Nonparametric Estimation of State-Price Densities Implicit in Financial Asset Prices," Journal of Finance, American Finance Association, vol. 53(2), pages 499-547, April.
    4. Charles J. Corrado & Tie Su, 1996. "S&P 500 index option tests of Jarrow and Rudd's approximate option valuation formula," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 16(6), pages 611-629, September.
    5. Jens Carsten Jackwerth., 1996. "Generalized Binomial Trees," Research Program in Finance Working Papers RPF-264, University of California at Berkeley.
    6. Gallant, Ronald & Tauchen, George, 1989. "Seminonparametric Estimation of Conditionally Constrained Heterogeneous Processes: Asset Pricing Applications," Econometrica, Econometric Society, vol. 57(5), pages 1091-1120, September.
    7. Ait-Sahalia, Yacine & Lo, Andrew W., 2000. "Nonparametric risk management and implied risk aversion," Journal of Econometrics, Elsevier, vol. 94(1-2), pages 9-51.
    8. Harrison, J. Michael & Kreps, David M., 1979. "Martingales and arbitrage in multiperiod securities markets," Journal of Economic Theory, Elsevier, vol. 20(3), pages 381-408, June.
    9. Buchen, Peter W. & Kelly, Michael, 1996. "The Maximum Entropy Distribution of an Asset Inferred from Option Prices," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 31(01), pages 143-159, March.
    10. Pan, Jun, 2002. "The jump-risk premia implicit in options: evidence from an integrated time-series study," Journal of Financial Economics, Elsevier, vol. 63(1), pages 3-50, January.
    11. Bakshi, Gurdip & Cao, Charles & Chen, Zhiwu, 2000. "Pricing and hedging long-term options," Journal of Econometrics, Elsevier, vol. 94(1-2), pages 277-318.
    12. Charles J. Corrado, 2001. "Option pricing based on the generalized lambda distribution," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 21(3), pages 213-236, March.
    13. Daniel Dufresne, 2000. "Laguerre Series for Asian and Other Options," Mathematical Finance, Wiley Blackwell, vol. 10(4), pages 407-428.
    14. Dilip B. Madan & Frank Milne, 1994. "Contingent Claims Valued And Hedged By Pricing And Investing In A Basis," Mathematical Finance, Wiley Blackwell, vol. 4(3), pages 223-245.
    15. Bakshi, Gurdip & Cao, Charles & Chen, Zhiwu, 1997. " Empirical Performance of Alternative Option Pricing Models," Journal of Finance, American Finance Association, vol. 52(5), pages 2003-2049, December.
    16. Stein, Elias M & Stein, Jeremy C, 1991. "Stock Price Distributions with Stochastic Volatility: An Analytic Approach," Review of Financial Studies, Society for Financial Studies, vol. 4(4), pages 727-752.
    17. Jondeau, Eric & Rockinger, Michael, 2000. "Reading the smile: the message conveyed by methods which infer risk neutral densities," Journal of International Money and Finance, Elsevier, vol. 19(6), pages 885-915, December.
    18. V. L. Martin & G. M. Martin & G. C. Lim, 2005. "Parametric pricing of higher order moments in S&P500 options," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(3), pages 377-404.
    19. Merton, Robert C., 1976. "Option pricing when underlying stock returns are discontinuous," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 125-144.
    20. Turnbull, Stuart M. & Wakeman, Lee Macdonald, 1991. "A Quick Algorithm for Pricing European Average Options," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 26(03), pages 377-389, September.
    21. Ritchey, Robert J, 1990. "Call Option Valuation for Discrete Normal Mixtures," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 13(4), pages 285-296, Winter.
    22. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    23. Bernard Dumas & Jeff Fleming & Robert E. Whaley, 1998. "Implied Volatility Functions: Empirical Tests," Journal of Finance, American Finance Association, vol. 53(6), pages 2059-2106, December.
    24. Das, Sanjiv Ranjan & Sundaram, Rangarajan K., 1999. "Of Smiles and Smirks: A Term Structure Perspective," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 34(02), pages 211-239, June.
    25. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    26. MacBeth, James D & Merville, Larry J, 1979. "An Empirical Examination of the Black-Scholes Call Option Pricing Model," Journal of Finance, American Finance Association, vol. 34(5), pages 1173-1186, December.
    27. Rockinger, Michael & Jondeau, Eric, 2002. "Entropy densities with an application to autoregressive conditional skewness and kurtosis," Journal of Econometrics, Elsevier, vol. 106(1), pages 119-142, January.
    28. Rubinstein, Mark, 1994. " Implied Binomial Trees," Journal of Finance, American Finance Association, vol. 49(3), pages 771-818, July.
    29. Malz, Allan M., 1996. "Using option prices to estimate realignment probabilities in the European Monetary System: the case of sterling-mark," Journal of International Money and Finance, Elsevier, vol. 15(5), pages 717-748, October.
    30. Melick, William R. & Thomas, Charles P., 1997. "Recovering an Asset's Implied PDF from Option Prices: An Application to Crude Oil during the Gulf Crisis," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 32(01), pages 91-115, March.
    31. Weiyu Guo, 2001. "Maximum Entropy in Option Pricing: A Convex‐Spline Smoothing Method," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 21(9), pages 819-832, September.
    32. Robert JARROW & Andrew RUDD, 2008. "Approximate Option Valuation For Arbitrary Stochastic Processes," World Scientific Book Chapters,in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 1, pages 9-31 World Scientific Publishing Co. Pte. Ltd..
    33. Gallant, A Ronald & Nychka, Douglas W, 1987. "Semi-nonparametric Maximum Likelihood Estimation," Econometrica, Econometric Society, vol. 55(2), pages 363-390, March.
    34. Capelle-Blancard, Gunther & Jurczenko, Emmanuel & Maillet, Bertrand, 2001. "The approximate option pricing model: performances and dynamic properties," Journal of Multinational Financial Management, Elsevier, vol. 11(4-5), pages 427-443, December.
    35. Menachem Brenner & Young Ho Eom, 1997. "No-Arbitrage Option Pricing: New Evidence on the Validity of the Martingale Property," New York University, Leonard N. Stern School Finance Department Working Paper Seires 98-009, New York University, Leonard N. Stern School of Business-.
    36. Campa, Jose M. & Chang, P. H. Kevin & Reider, Robert L., 1998. "Implied exchange rate distributions: evidence from OTC option markets1," Journal of International Money and Finance, Elsevier, vol. 17(1), pages 117-160, February.
    37. Cox, John C. & Ross, Stephen A., 1976. "The valuation of options for alternative stochastic processes," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 145-166.
    38. Mark Rubinstein., 1994. "Implied Binomial Trees," Research Program in Finance Working Papers RPF-232, University of California at Berkeley.
    39. Stutzer, Michael, 1996. " A Simple Nonparametric Approach to Derivative Security Valuation," Journal of Finance, American Finance Association, vol. 51(5), pages 1633-1652, December.
    40. Gallant, A. Ronald & Hansen, Lars Peter & Tauchen, George, 1990. "Using conditional moments of asset payoffs to infer the volatility of intertemporal marginal rates of substitution," Journal of Econometrics, Elsevier, vol. 45(1-2), pages 141-179.
    41. Bates, David S., 1996. "Dollar jump fears, 1984-1992: distributional abnormalities implicit in currency futures options," Journal of International Money and Finance, Elsevier, vol. 15(1), pages 65-93, February.
    42. Christine A. Brown & David M. Robinson, 2002. "Skewness and Kurtosis Implied by Option Prices: A Correction," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 25(2), pages 279-282.
    43. Bhupinder Bahra, 1997. "Implied risk-neutral probability density functions from option prices: theory and application," Bank of England working papers 66, Bank of England.
    44. Bates, David S, 1996. "Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in Deutsche Mark Options," Review of Financial Studies, Society for Financial Studies, vol. 9(1), pages 69-107.
    45. Hull, John C & White, Alan D, 1987. " The Pricing of Options on Assets with Stochastic Volatilities," Journal of Finance, American Finance Association, vol. 42(2), pages 281-300, June.
    46. Ignacio Mauleon & Javier Perote, 2000. "Testing densities with financial data: an empirical comparison of the Edgeworth-Sargan density to the Student's t," The European Journal of Finance, Taylor & Francis Journals, vol. 6(2), pages 225-239.
    47. Charles J. Corrado & Tie Su, 1996. "Skewness And Kurtosis In S&P 500 Index Returns Implied By Option Prices," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 19(2), pages 175-192, June.
    48. Bruce J. Sherrick & Philip Garcia & Viswanath Tirupattur, 1996. "Recovering probabilistic information from option markets: Tests of distributional assumptions," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 16(5), pages 545-560, August.
    49. Spanos,Aris, 1986. "Statistical Foundations of Econometric Modelling," Cambridge Books, Cambridge University Press, number 9780521269124, August.
    50. Lee, Tom K Y & Tse, Y K, 1991. "Term Structure of Interest Rates in the Singapore Asian Dollar Market," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 6(2), pages 143-152, April-Jun.
    51. Robert J. Ritchey, 1990. "Call Option Valuation For Discrete Normal Mixtures," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 13(4), pages 285-296, December.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fmg:fmgdps:dp430. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (The FMG Administration). General contact details of provider: http://www.lse.ac.uk/fmg/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.