IDEAS home Printed from https://ideas.repec.org/p/hhs/slueko/2012_002.html
   My bibliography  Save this paper

Directed technological change: It's all about knowledge

Author

Listed:
  • Hart, Rob

    (Department of Economics, Swedish University of Agricultural Sciences)

Abstract

Directed technological change concerns how stocks of factor-augmenting knowledge evolve relative to each other. In a simple framework we show that relative investment rates depend directly on the relative factor shares, and that the resulting evolution of the economy depends on the substitutability between the factors and the nature of the links between the knowledge stocks. We thus generalize and reinterpret existing results. Furthermore, we propose a novel model of spillovers between stocks of factor-augmenting knowledge which results in multiple equilibria when the factors are substitutes. This may have profound implications for the modelling of technological transitions\m such as from `dirty' to `clean' technology, or from low-skill/low-tech to high-skill/high-tech production systems\m and hence for modelling long-run economic change in general.

Suggested Citation

  • Hart, Rob, 2012. "Directed technological change: It's all about knowledge," Working Paper Series 2012:02, Swedish University of Agricultural Sciences, Department Economics.
  • Handle: RePEc:hhs:slueko:2012_002
    as

    Download full text from publisher

    File URL: http://www.ekoninternt.se/rob/wps/robhartWP1203.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Daron Acemoglu & Philippe Aghion & Leonardo Bursztyn & David Hemous, 2012. "The Environment and Directed Technical Change," American Economic Review, American Economic Association, vol. 102(1), pages 131-166, February.
    2. Geir Asheim & Wolfgang Buchholz & Cees Withagen, 2003. "The Hartwick Rule: Myths and Facts," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 25(2), pages 129-150, June.
    3. Daron Acemoglu, 2007. "Equilibrium Bias of Technology," Econometrica, Econometric Society, vol. 75(5), pages 1371-1409, September.
    4. Daron Acemoglu, 1998. "Why Do New Technologies Complement Skills? Directed Technical Change and Wage Inequality," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 113(4), pages 1055-1089.
    5. Daron Acemoglu, 2002. "Directed Technical Change," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 69(4), pages 781-809.
    6. Francesco Caselli & Wilbur John Coleman II, 2006. "The World Technology Frontier," American Economic Review, American Economic Association, vol. 96(3), pages 499-522, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Derek Lemoine, 2024. "Innovation-Led Transitions in Energy Supply," American Economic Journal: Macroeconomics, American Economic Association, vol. 16(1), pages 29-65, January.
    2. Jianming Xi & Hanran Wu & Bo Li & Jingyu Liu, 2020. "A Quantitative Analysis of the Optimal Energy Policy from the Perspective of China’s Supply-Side Reform," Sustainability, MDPI, vol. 12(12), pages 1-13, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gregory Casey, 2024. "Energy Efficiency and Directed Technical Change: Implications for Climate Change Mitigation," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 91(1), pages 192-228.
    2. Jerzmanowski, Michal & Tamura, Robert, 2019. "Directed technological change & cross-country income differences: A quantitative analysis," Journal of Development Economics, Elsevier, vol. 141(C).
    3. Hui Zhang & Haiqian Ke, 2022. "Spatial Spillover Effects of Directed Technical Change on Urban Carbon Intensity, Based on 283 Cities in China from 2008 to 2019," IJERPH, MDPI, vol. 19(3), pages 1-19, February.
    4. Zhu, Xuehong & Zeng, Anqi & Zhong, Meirui & Huang, Jianbai, 2021. "Elasticity of substitution and biased technical change in the CES production function for China's metal-intensive industries," Resources Policy, Elsevier, vol. 73(C).
    5. Lin, Justin Yifu & Liu, Zhengwen & Zhang, Bo, 2023. "Endowment, technology choice, and industrial upgrading," Structural Change and Economic Dynamics, Elsevier, vol. 65(C), pages 364-381.
    6. Daron Acemoglu & Pascual Restrepo, 2016. "The Race Between Machine and Man: Implications of Technology for Growth, Factor Shares and Employment," NBER Working Papers 22252, National Bureau of Economic Research, Inc.
    7. Anouk Faure & Marc Baudry, 2021. "Technological Progress and Carbon Price Formation: an Analysis of EU-ETS Plants," Working Papers hal-04159764, HAL.
    8. Werner Roeger & Janos Varga & Jan in 't Veld, 2010. "How to close the productivity gap between the US and Europe: A quantitative assessment using a semi-endogenous growth model," European Economy - Economic Papers 2008 - 2015 399, Directorate General Economic and Financial Affairs (DG ECFIN), European Commission.
    9. Jens J. Krüger, 2017. "Revisiting the world technology frontier: a directional distance function approach," Journal of Economic Growth, Springer, vol. 22(1), pages 67-95, March.
    10. Saltari Enrico & Wymer Clifford R. & Federici Daniela & Giannetti Marilena, 2012. "Technological Adoption with Imperfect Markets in the Italian Economy," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 16(2), pages 1-30, April.
    11. Gregory Casey, 2018. "Technology-Driven Unemployment," 2018 Meeting Papers 302, Society for Economic Dynamics.
    12. Boyce, John R., 2019. "The paradox of value, directed technical change, and the relative abundance of the chemical elements," Resource and Energy Economics, Elsevier, vol. 58(C).
    13. Cragun, Randy & Tamura, Robert & Jerzmanowski, Michal, 2017. "Directed technical change: A macro perspective on life cycle earnings profiles," MPRA Paper 81830, University Library of Munich, Germany.
    14. Enrico Saltari & Clifford Wymer & Daniela Federici & Marilena Giannetti, 2011. "The impact of ICT on the Italian productivity dynamics," Working Papers in Public Economics 149, University of Rome La Sapienza, Department of Economics and Law.
    15. Daron Acemoglu, 2010. "When Does Labor Scarcity Encourage Innovation?," Journal of Political Economy, University of Chicago Press, vol. 118(6), pages 1037-1078.
    16. Shiyuan Pan & Heng-fu Zou & Tailong Li, 2010. "Patent Protection, Technological Change and Wage Inequality," CEMA Working Papers 437, China Economics and Management Academy, Central University of Finance and Economics.
    17. T. Gries & R. Grundmann & I. Palnau & M. Redlin, 2017. "Innovations, growth and participation in advanced economies - a review of major concepts and findings," International Economics and Economic Policy, Springer, vol. 14(2), pages 293-351, April.
    18. Philippe Aghion & Antoine Dechezleprêtre & David Hémous & Ralf Martin & John Van Reenen, 2016. "Carbon Taxes, Path Dependency, and Directed Technical Change: Evidence from the Auto Industry," Journal of Political Economy, University of Chicago Press, vol. 124(1), pages 1-51.
    19. Lemoine, Derek, 2020. "General equilibrium rebound from energy efficiency innovation," European Economic Review, Elsevier, vol. 125(C).
    20. Pi, Jiancai & Zhang, Pengqing, 2018. "Skill-biased technological change and wage inequality in developing countries," International Review of Economics & Finance, Elsevier, vol. 56(C), pages 347-362.

    More about this item

    Keywords

    Growth; directed technological change; knowledge spillovers.;
    All these keywords.

    JEL classification:

    • O11 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - Macroeconomic Analyses of Economic Development
    • O33 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Technological Change: Choices and Consequences; Diffusion Processes

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hhs:slueko:2012_002. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Elizabeth Hillerius (email available below). General contact details of provider: https://edirc.repec.org/data/iesluse.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.