IDEAS home Printed from https://ideas.repec.org/p/hhs/oruesi/2012_002.html
   My bibliography  Save this paper

Robust critical values for unit root tests for series with conditional heteroscedasticity errors: An application of the simple NoVaS transformation

Author

Listed:
  • Mantalos, Panagiotis

    (Department of Business, Economics, Statistics and Informatics)

Abstract

In this paper, we introduce a set of critical values for unit root tests that are robust in the presence of conditional heteroscedasticity errors using the normalizing and variance-stabilizing transformation (NoVaS) in Politis (2007) and examine their properties using Monte Carlo methods. In terms of the size of the test, our analysis reveals that unit root tests with NoVaS-modified critical values have actual sizes close to the nominal size. For the power of the test, we find that unit root tests with NoVaS-modified critical values either have the same power as, or slightly better than, tests using conventional Dickey–Fuller critical values across the sample range considered.

Suggested Citation

  • Mantalos, Panagiotis, 2012. "Robust critical values for unit root tests for series with conditional heteroscedasticity errors: An application of the simple NoVaS transformation," Working Papers 2012:2, Örebro University, School of Business.
  • Handle: RePEc:hhs:oruesi:2012_002
    as

    Download full text from publisher

    File URL: https://www.oru.se/globalassets/oru-sv/institutioner/hh/workingpapers/workingpapers2012/wp-2-2012.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Kim, Kiwhan & Schmidt, Peter, 1993. "Unit root tests with conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 59(3), pages 287-300, October.
    2. Davidson, Russell & MacKinnon, James G., 1994. "Graphical Methods for Investigating the Size and Power of Hypothesis Tests," Queen's Economics Department Working Papers 273307, Queen's University - Department of Economics.
    3. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    4. Davidson, Russell & MacKinnon, James G, 1998. "Graphical Methods for Investigating the Size and Power of Hypothesis Tests," The Manchester School of Economic & Social Studies, University of Manchester, vol. 66(1), pages 1-26, January.
    5. MacKinnon, James G, 1992. "Model Specification Tests and Artificial Regressions," Journal of Economic Literature, American Economic Association, vol. 30(1), pages 102-146, March.
    6. Dimitris N. Politis, 0. "Model-free versus Model-based Volatility Prediction," Journal of Financial Econometrics, Oxford University Press, vol. 5(3), pages 358-359.
    7. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Niklas Ahlgren & Alexander Back & Timo Terasvirta, 2025. "Testing parametric additive time-varying GARCH models," Papers 2506.23821, arXiv.org.
    2. Andersen, Torben G. & Chung, Hyung-Jin & Sorensen, Bent E., 1999. "Efficient method of moments estimation of a stochastic volatility model: A Monte Carlo study," Journal of Econometrics, Elsevier, vol. 91(1), pages 61-87, July.
    3. Gabriele Fiorentini & Enrique Sentana, 2012. "Tests for Serial Dependence in Static, Non-Gaussian Factor Models," Working Papers wp2012_1211, CEMFI.
    4. Cristina Amado & Timo Teräsvirta, 2008. "Modelling Conditional and Unconditional Heteroskedasticity with Smoothly Time-Varying Structure," NIPE Working Papers 03/2008, NIPE - Universidade do Minho.
    5. Shinn-Juh Lin & Jian Yang, 2000. "Testing Shifts in Financial Models with Conditional Heteroskedasticity: An Empirical Distribution Function Approach," Econometric Society World Congress 2000 Contributed Papers 0063, Econometric Society.
    6. Duchesne, Pierre, 2006. "Testing for multivariate autoregressive conditional heteroskedasticity using wavelets," Computational Statistics & Data Analysis, Elsevier, vol. 51(4), pages 2142-2163, December.
    7. Gabriele Fiorentini & Enrique Sentana, 2009. "Dynamic Specification Tests for Static Factor Models," Working Papers wp2009_0912, CEMFI.
    8. Cristina Amado & Timo Teräsvirta, 2017. "Specification and testing of multiplicative time-varying GARCH models with applications," Econometric Reviews, Taylor & Francis Journals, vol. 36(4), pages 421-446, April.
    9. Del Brio, Esther B. & Ñíguez, Trino-Manuel & Perote, Javier, 2008. "Multivariate Gram-Charlier Densities," MPRA Paper 29073, University Library of Munich, Germany.
    10. Timo Dimitriadis & iaochun Liu & Julie Schnaitmann, 2023. "Encompassing Tests for Value at Risk and Expected Shortfall Multistep Forecasts Based on Inference on the Boundary," Journal of Financial Econometrics, Oxford University Press, vol. 21(2), pages 412-444.
    11. Adrian Pagan & Hashem Pesaran, 2007. "Econometric Analysis of Structural Systems with Permanent and Transitory Shocks. Working paper #7," NCER Working Paper Series 7, National Centre for Econometric Research.
    12. Adrian C. Darnell, 1994. "A Dictionary Of Econometrics," Books, Edward Elgar Publishing, number 118, March.
    13. Aktas, Nihat & de Bodt, Eric & Cousin, Jean-Gabriel, 2007. "Event studies with a contaminated estimation period," Journal of Corporate Finance, Elsevier, vol. 13(1), pages 129-145, March.
    14. Stan Hurn & Ralf Becker, 2009. "Testing for Nonlinearity in Mean in the Presence of Heteroskedasticity," Economic Analysis and Policy, Elsevier, vol. 39(2), pages 311-326, September.
    15. Blake, Andrew P. & Kapetanios, George, 2000. "A radial basis function artificial neural network test for ARCH," Economics Letters, Elsevier, vol. 69(1), pages 15-23, October.
    16. Francq, Christian & Zakoïan, Jean-Michel, 2022. "Testing the existence of moments for GARCH processes," Journal of Econometrics, Elsevier, vol. 227(1), pages 47-64.
    17. Hodgson, Douglas J & Vorkink, Keith P, 2003. "Efficient Estimation of Conditional Asset-Pricing Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 21(2), pages 269-283, April.
    18. Till Strohsal & Enzo Weber, 2014. "Mean-variance cointegration and the expectations hypothesis," Quantitative Finance, Taylor & Francis Journals, vol. 14(11), pages 1983-1997, November.
    19. Panagiotis Mantalos & Kristofer Mansson & Ghazi Shukur, 2010. "The effect of spillover on the Johansen tests for cointegration: a Monte Carlo analysis," International Journal of Computational Economics and Econometrics, Inderscience Enterprises Ltd, vol. 1(3/4), pages 327-342.
    20. Peguin-Feissolle, Anne, 1999. "A comparison of the power of some tests for conditional heteroscedasticity," Economics Letters, Elsevier, vol. 63(1), pages 5-17, April.

    More about this item

    Keywords

    ;
    ;
    ;

    JEL classification:

    • C01 - Mathematical and Quantitative Methods - - General - - - Econometrics
    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hhs:oruesi:2012_002. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/ieoruse.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.