IDEAS home Printed from https://ideas.repec.org/p/hhs/hastef/0630.html
   My bibliography  Save this paper

Bayesian simultaneous determination of structural breaks and lag lengths

Author

Listed:
  • Hultblad, Brigitta

    (Dept. of Economic Statistics, Stockholm School of Economics)

  • Karlsson, Sune

    (Dept. of Economics, Statistics and Informatics)

Abstract

The detection of structural change and determination of lag lengths are long-standing issues in time series analysis. This paper demonstrates how these can be successfully married in a Bayesian analysis. By taking account of the inherent uncertainty about the lag length when deciding on the number of structural breaks and vice versa we avoid some common pitfalls and are able to draw more robust conclusions. The approach is illustrated using both real and simulated data.

Suggested Citation

  • Hultblad, Brigitta & Karlsson, Sune, 2006. "Bayesian simultaneous determination of structural breaks and lag lengths," SSE/EFI Working Paper Series in Economics and Finance 630, Stockholm School of Economics.
  • Handle: RePEc:hhs:hastef:0630
    as

    Download full text from publisher

    File URL: http://swopec.hhs.se/hastef/papers/hastef0630.rev.pdf
    File Function: Complete Rendering
    Download Restriction: no

    File URL: http://swopec.hhs.se/hastef/papers/hastef0630.sim.pdf
    File Function: Simulation results
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Garcia, Rene & Perron, Pierre, 1996. "An Analysis of the Real Interest Rate under Regime Shifts," The Review of Economics and Statistics, MIT Press, vol. 78(1), pages 111-125, February.
    2. Zivot, Eric & Andrews, Donald W K, 2002. "Further Evidence on the Great Crash, the Oil-Price Shock, and the Unit-Root Hypothesis," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 25-44, January.
    3. Gary Koop & Simon M. Potter, 2007. "Estimation and Forecasting in Models with Multiple Breaks," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 74(3), pages 763-789.
    4. Wang, Jiahui & Zivot, Eric, 2000. "A Bayesian Time Series Model of Multiple Structural Changes in Level, Trend, and Variance," Journal of Business & Economic Statistics, American Statistical Association, vol. 18(3), pages 374-386, July.
    5. Jushan Bai & Pierre Perron, 1998. "Estimating and Testing Linear Models with Multiple Structural Changes," Econometrica, Econometric Society, vol. 66(1), pages 47-78, January.
    6. Walsh, Carl E, 1988. "Testing for Real Effects of Monetary Policy Regime Shifts: A Note," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 20(3), pages 393-401, August.
    7. Albert, James H & Chib, Siddhartha, 1993. "Bayes Inference via Gibbs Sampling of Autoregressive Time Series Subject to Markov Mean and Variance Shifts," Journal of Business & Economic Statistics, American Statistical Association, vol. 11(1), pages 1-15, January.
    8. M. Hashem Pesaran & Davide Pettenuzzo & Allan Timmermann, 2006. "Forecasting Time Series Subject to Multiple Structural Breaks," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 73(4), pages 1057-1084.
    9. Perron, Pierre, 1989. "The Great Crash, the Oil Price Shock, and the Unit Root Hypothesis," Econometrica, Econometric Society, vol. 57(6), pages 1361-1401, November.
    10. Banerjee, Anindya & Lumsdaine, Robin L & Stock, James H, 1992. "Recursive and Sequential Tests of the Unit-Root and Trend-Break Hypotheses: Theory and International Evidence," Journal of Business & Economic Statistics, American Statistical Association, vol. 10(3), pages 271-287, July.
    11. Marriott, John & Newbold, Paul, 2000. "The strength of evidence for unit autoregressive roots and structural breaks: A Bayesian perspective," Journal of Econometrics, Elsevier, vol. 98(1), pages 1-25, September.
    12. Rappoport, Peter & Reichlin, Lucrezia, 1989. "Segmented Trends and Non-stationary Time Series," Economic Journal, Royal Economic Society, vol. 99(395), pages 168-177, Supplemen.
    13. Geweke, J, 1993. "Bayesian Treatment of the Independent Student- t Linear Model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 8(S), pages 19-40, Suppl. De.
    14. Hamilton, James D., 1990. "Analysis of time series subject to changes in regime," Journal of Econometrics, Elsevier, vol. 45(1-2), pages 39-70.
    15. Jushan Bai & Pierre Perron, 2003. "Computation and analysis of multiple structural change models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(1), pages 1-22.
    16. Jushan Bai & Robin L. Lumsdaine & James H. Stock, 1998. "Testing For and Dating Common Breaks in Multivariate Time Series," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 65(3), pages 395-432.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Luoto, Jani, 2011. "Aggregate infrastructure capital stock and long-run growth: Evidence from Finnish data," Journal of Development Economics, Elsevier, vol. 94(2), pages 181-191, March.
    2. Meligkotsidou, Loukia & Tzavalis, Elias & Vrontos, Ioannis, 2017. "On Bayesian analysis and unit root testing for autoregressive models in the presence of multiple structural breaks," Econometrics and Statistics, Elsevier, vol. 4(C), pages 70-90.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Meligkotsidou, Loukia & Tzavalis, Elias & Vrontos, Ioannis, 2017. "On Bayesian analysis and unit root testing for autoregressive models in the presence of multiple structural breaks," Econometrics and Statistics, Elsevier, vol. 4(C), pages 70-90.
    2. Geweke, John & Jiang, Yu, 2011. "Inference and prediction in a multiple-structural-break model," Journal of Econometrics, Elsevier, vol. 163(2), pages 172-185, August.
    3. Adam Check & Jeremy Piger, 2021. "Structural Breaks in U.S. Macroeconomic Time Series: A Bayesian Model Averaging Approach," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 53(8), pages 1999-2036, December.
    4. John D. Levendis, 2018. "Time Series Econometrics," Springer Texts in Business and Economics, Springer, number 978-3-319-98282-3, June.
    5. Joseph P. Byrne & Roger Perman, 2006. "Unit Roots and Structural Breaks: A Survey of the Literature," Working Papers 2006_10, Business School - Economics, University of Glasgow.
    6. Kelvin Balcombe & Iain Fraser & Abhijit Sharma, 2011. "Bayesian model averaging and identification of structural breaks in time series," Applied Economics, Taylor & Francis Journals, vol. 43(26), pages 3805-3818.
    7. Jouini, Jamel & Boutahar, Mohamed, 2005. "Evidence on structural changes in U.S. time series," Economic Modelling, Elsevier, vol. 22(3), pages 391-422, May.
    8. Banerjee, Anindya & Urga, Giovanni, 2005. "Modelling structural breaks, long memory and stock market volatility: an overview," Journal of Econometrics, Elsevier, vol. 129(1-2), pages 1-34.
    9. Brittle, Shane, 2009. "Ricardian Equivalence and the Efficacy of Fiscal Policy in Australia," Economics Working Papers wp09-10, School of Economics, University of Wollongong, NSW, Australia.
    10. Bill Russell & Dooruj Rambaccussing, 2019. "Breaks and the statistical process of inflation: the case of estimating the ‘modern’ long-run Phillips curve," Empirical Economics, Springer, vol. 56(5), pages 1455-1475, May.
    11. Kanjilal, Kakali & Ghosh, Sajal, 2013. "Environmental Kuznet’s curve for India: Evidence from tests for cointegration with unknown structuralbreaks," Energy Policy, Elsevier, vol. 56(C), pages 509-515.
    12. Devi, P. Indira & Shanmugam, K.R. & Jayasree, M.G., 2012. "Compensating Wages for Occupational Risks of Farm Workers in India," Indian Journal of Agricultural Economics, Indian Society of Agricultural Economics, vol. 67(2), pages 1-12.
    13. Hervé Le Bihan, 2004. "Tests de ruptures : une application au PIB tendanciel français," Économie et Prévision, Programme National Persée, vol. 163(2), pages 133-154.
    14. Choi, Kyongwook & Yu, Wei-Choun & Zivot, Eric, 2010. "Long memory versus structural breaks in modeling and forecasting realized volatility," Journal of International Money and Finance, Elsevier, vol. 29(5), pages 857-875, September.
    15. Miguel Arranz & Alvaro Escribano, 2004. "Outliers - robust ECM cointegration tests based on the trend components," Spanish Economic Review, Springer;Spanish Economic Association, vol. 6(4), pages 243-266, December.
    16. Travaglini, Guido, 2007. "The U.S. Dynamic Taylor Rule With Multiple Breaks, 1984-2001," MPRA Paper 3419, University Library of Munich, Germany, revised 15 Jun 2007.
    17. Alessandra Canepa, & Menelaos G. Karanasos & Alexandros G. Paraskevopoulos,, 2019. "Second Order Time Dependent Inflation Persistence in the United States: a GARCH-in-Mean Model with Time Varying Coefficients," Department of Economics and Statistics Cognetti de Martiis. Working Papers 201911, University of Turin.
    18. Jushan Bai & Pierre Perron, 2003. "Computation and analysis of multiple structural change models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(1), pages 1-22.
    19. Venkata Jandhyala & Stergios Fotopoulos & Ian MacNeill & Pengyu Liu, 2013. "Inference for single and multiple change-points in time series," Journal of Time Series Analysis, Wiley Blackwell, vol. 34(4), pages 423-446, July.
    20. Rabanal, Cristian & Baronio, Alfredo Mario, 2010. "Alternativas para la modelización de tendencias y ciclos en la economía argentina, 1880-2009/Alternatives for Modeling Trends and Cycles in Argentina's Economy, 1880 - 2009," Estudios de Economia Aplicada, Estudios de Economia Aplicada, vol. 28, pages 651-670, Diciembre.

    More about this item

    Keywords

    Regime shifts; Model uncertainty; Model averaging; Markov chain Monte Carlo; Real interest rate;
    All these keywords.

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hhs:hastef:0630. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Helena Lundin (email available below). General contact details of provider: https://edirc.repec.org/data/erhhsse.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.