IDEAS home Printed from https://ideas.repec.org/p/hhs/cesisp/0227.html
   My bibliography  Save this paper

Linear and Non-linear Causality Test in a LSTAR model - wavelet decomposition in a non-linear environment

Author

Listed:
  • Li, Yushu

    (CAFO, Växjö University)

  • Shukur, Ghazi

    () (CESIS - Centre of Excellence for Science and Innovation Studies, Royal Institute of Technology)

Abstract

In this paper, we use simulated data to investigate the power of different causality tests in a two-dimensional vector autoregressive (VAR) model. The data are presented in a non-linear environment that is modelled using a logistic smooth transition autoregressive (LSTAR) function. We use both linear and non-linear causality tests to investigate the unidirection causality relationship and compare the power of these tests. The linear test is the commonly used Granger causality test. The non-linear test is a non-parametric test based on Baek and Brock (1992) and Hiemstra and Jones (1994). When implementing the non-linear test, we use separately the original data, the linear VAR filtered residuals, and the wavelet decomposed series based on wavelet multiresolution analysis (MRA). The VAR filtered residuals and the wavelet decomposition series are used to extract the non-linear structure of the original data. The simulation results show that the non-parametric test based on the wavelet decomposition series (which is a model free approach) has the highest power to explore the causality relationship in the non-linear models.

Suggested Citation

  • Li, Yushu & Shukur, Ghazi, 2010. "Linear and Non-linear Causality Test in a LSTAR model - wavelet decomposition in a non-linear environment," Working Paper Series in Economics and Institutions of Innovation 227, Royal Institute of Technology, CESIS - Centre of Excellence for Science and Innovation Studies.
  • Handle: RePEc:hhs:cesisp:0227
    as

    Download full text from publisher

    File URL: https://static.sys.kth.se/itm/wp/cesis/cesiswp227.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Christoph Schleicher, 2002. "An Introduction to Wavelets for Economists," Staff Working Papers 02-3, Bank of Canada.
    2. Li, Jing, 2006. "Testing Granger Causality in the presence of threshold effects," International Journal of Forecasting, Elsevier, vol. 22(4), pages 771-780.
    3. Bell, David & Kay, Jim & Malley, Jim, 1996. "A non-parametric approach to non-linear causality testing," Economics Letters, Elsevier, vol. 51(1), pages 7-18, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Monica Billio & Silvio Di Sanzo, 2015. "Granger-causality in Markov switching models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(5), pages 956-966, May.
    2. Yii Siing Wong & Chong Mun Ho & Brian Dollery, 2012. "Impact of exchange rate volatility on import flows: the case of Malaysia and the United States," Applied Financial Economics, Taylor & Francis Journals, vol. 22(24), pages 2027-2034, December.
    3. Prasad Bal, Debi & Narayan Rath, Badri, 2015. "Nonlinear causality between crude oil price and exchange rate: A comparative study of China and India," Energy Economics, Elsevier, vol. 51(C), pages 149-156.
    4. Lim, Shiok Ye & Ho, Chong Mun, 2013. "Nonlinearity in ASEAN-5 export-led growth model: Empirical evidence from nonparametric approach," Economic Modelling, Elsevier, vol. 32(C), pages 136-145.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tiwari, Aviral Kumar & Dar, Arif Billah & Bhanja, Niyati, 2013. "Oil price and exchange rates: A wavelet based analysis for India," Economic Modelling, Elsevier, vol. 31(C), pages 414-422.
    2. Péguin-Feissolle, Anne & Strikholm, Birgit & Teräsvirta, Timo, 2007. "Testing the Granger noncausality hypothesis in stationary nonlinear models of unknown functional form," SSE/EFI Working Paper Series in Economics and Finance 672, Stockholm School of Economics, revised 18 Jan 2012.
    3. João Paulo Martin Faleiros & Denisard Cnéio de Oliveira Alves, 2008. "Modelo de Crescimento Baseado nas Exportações: Evidências empíricas para Chile, Brasil e México, em uma perspectiva Não Linear," Anais do XXXVI Encontro Nacional de Economia [Proceedings of the 36th Brazilian Economics Meeting] 200807170923500, ANPEC - Associação Nacional dos Centros de Pós-Graduação em Economia [Brazilian Association of Graduate Programs in Economics].
    4. Benhmad, François, 2012. "Modeling nonlinear Granger causality between the oil price and U.S. dollar: A wavelet based approach," Economic Modelling, Elsevier, vol. 29(4), pages 1505-1514.
    5. Prasad Bal, Debi & Narayan Rath, Badri, 2015. "Nonlinear causality between crude oil price and exchange rate: A comparative study of China and India," Energy Economics, Elsevier, vol. 51(C), pages 149-156.
    6. M-Ali Sotoudeh & Andrew C. Worthington, 2016. "A comparative analysis of monetary responses to global oil price changes: net oil producing vs. net oil consuming countries," International Economics and Economic Policy, Springer, vol. 13(4), pages 623-640, October.
    7. Lahura, Erick & Vega, Marco, 2011. "Wavelet-based Core Inflation Measures: Evidence from Peru," Working Papers 2011-019, Banco Central de Reserva del Perú.
    8. Francis In & Sangbae Kim, 2012. "An Introduction to Wavelet Theory in Finance:A Wavelet Multiscale Approach," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 8431, January.
    9. Boubaker Heni & Canarella Giorgio & Miller Stephen M. & Gupta Rangan, 2017. "Time-varying persistence of inflation: evidence from a wavelet-based approach," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 21(4), pages 1-18, September.
    10. Luca De Benedictis & Marco Gallegati, 2005. "Trade balance and terms of trade in U.S.: a time-scale decomposition analysis," International Trade 0512016, University Library of Munich, Germany.
    11. Galimberti, Jaqueson K., 2009. "Conditioned Export-Led Growth Hypothesis: A Panel Threshold Regressions Approach," MPRA Paper 13417, University Library of Munich, Germany.
    12. Apergis, Nicholas & Chang, Tsangyao & Gupta, Rangan & Ziramba, Emmanuel, 2016. "Hydroelectricity consumption and economic growth nexus: Evidence from a panel of ten largest hydroelectricity consumers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 318-325.
    13. Neeraj, & Panigrahi, Prasanta K., 2017. "Causality and correlations between BSE and NYSE indexes: A Janus faced relationship," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 481(C), pages 284-313.
    14. Ibrahim Ahamada & Philippe Jolivaldt, 2010. "Classical vs wavelet-based filters Comparative study and application to business cycle," Documents de travail du Centre d'Economie de la Sorbonne 10027, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    15. Bera, Anil Kumar & Uyar, Umut & Kangalli Uyar, Sinem Guler, 2020. "Analysis of the five-factor asset pricing model with wavelet multiscaling approach," The Quarterly Review of Economics and Finance, Elsevier, vol. 76(C), pages 414-423.
    16. Alper Ozun & Atilla Cifter, 2008. "Modeling long-term memory effect in stock prices: A comparative analysis with GPH test and Daubechies wavelets," Studies in Economics and Finance, Emerald Group Publishing, vol. 25(1), pages 38-48, March.
    17. Lehkonen, Heikki & Heimonen, Kari, 2014. "Timescale-dependent stock market comovement: BRICs vs. developed markets," Journal of Empirical Finance, Elsevier, vol. 28(C), pages 90-103.
    18. Dowd, Kevin & Cotter, John & Loh, Lixia, 2011. "U.S. Core Inflation: A Wavelet Analysis," Macroeconomic Dynamics, Cambridge University Press, vol. 15(4), pages 513-536, September.
    19. Habimana, Olivier, 2018. "Asymmetry and Multiscale Dynamics in Macroeconomic Time Series Analysis," MPRA Paper 87823, University Library of Munich, Germany.
    20. Alexander Zeitlberger & Alexander Brauneis, 2016. "Modeling carbon spot and futures price returns with GARCH and Markov switching GARCH models," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 24(1), pages 149-176, March.

    More about this item

    Keywords

    Granger causality; LSTAR model; Wavelet multiresolution; Monte Carlo simulation;

    JEL classification:

    • C01 - Mathematical and Quantitative Methods - - General - - - Econometrics
    • C10 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - General
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hhs:cesisp:0227. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Vardan Hovsepyan). General contact details of provider: http://edirc.repec.org/data/cekthse.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.