IDEAS home Printed from https://ideas.repec.org/p/hhb/aarbfi/2006-01.html
   My bibliography  Save this paper

The Fractional Ornstein-Uhlenbeck Process: Term Structure Theory and Application

Author

Listed:
  • Høg, Espen P.

    () (Department of Accounting, Aarhus School of Business)

  • Frederiksen, Per H.

    () (Jyske Bank)

Abstract

The paper revisits dynamic term structure models (DTSMs) and proposes a new way in dealing with the limitation of the classical affine models. In particular, this paper expands the flexibility of the DTSMs by applying a fractional Brownian motion as the governing force of the state variable instead of the standard Brownian motion. This is a new direction in pricing non defaultable bonds with offspring in the arbitrage free pricing of weather derivatives based on fractional Brownian motions. By applying fractional Ito calculus and a fractional version of the Girsanov transform, a no arbitrage price of the bond is recovered by solving a fractional version of the fundamental bond pricing equation. Besides this theoretical contribution, the paper proposes an estimation methodology based on the Kalman filter approach, which is applied to the US term structure of interest rates.

Suggested Citation

  • Høg, Espen P. & Frederiksen, Per H., 2006. "The Fractional Ornstein-Uhlenbeck Process: Term Structure Theory and Application," Finance Research Group Working Papers F-2006-01, University of Aarhus, Aarhus School of Business, Department of Business Studies.
  • Handle: RePEc:hhb:aarbfi:2006-01
    as

    Download full text from publisher

    File URL: http://www.hha.dk/bs/wp/fin/F_2006_01.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Ait-Sahalia, Yacine, 1996. "Testing Continuous-Time Models of the Spot Interest Rate," Review of Financial Studies, Society for Financial Studies, vol. 9(2), pages 385-426.
    2. Das, Sanjiv R., 2002. "The surprise element: jumps in interest rates," Journal of Econometrics, Elsevier, vol. 106(1), pages 27-65, January.
    3. Dittmann, Ingolf & Granger, Clive W. J., 2002. "Properties of nonlinear transformations of fractionally integrated processes," Journal of Econometrics, Elsevier, vol. 110(2), pages 113-133, October.
    4. Duffee, Gregory R, 1999. "Estimating the Price of Default Risk," Review of Financial Studies, Society for Financial Studies, vol. 12(1), pages 197-226.
    5. repec:bla:jfnres:v:22:y:1999:i:1:p:107-130 is not listed on IDEAS
    6. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold, 2007. "Roughing It Up: Including Jump Components in the Measurement, Modeling, and Forecasting of Return Volatility," The Review of Economics and Statistics, MIT Press, vol. 89(4), pages 701-720, November.
    7. Emma Iglesias & Garry Phillips, 2005. "Analysing one-month Euro-market interest rates by fractionally integrated models," Applied Financial Economics, Taylor & Francis Journals, pages 95-106.
    8. John C. Cox & Jonathan E. Ingersoll Jr. & Stephen A. Ross, 2005. "A Theory Of The Term Structure Of Interest Rates," World Scientific Book Chapters,in: Theory Of Valuation, chapter 5, pages 129-164 World Scientific Publishing Co. Pte. Ltd..
    9. Rimas Norvaisa, 2000. "Modelling of stock price changes: A real analysis approach," Finance and Stochastics, Springer, vol. 4(3), pages 343-369.
    10. Fred Espen Benth, 2003. "On arbitrage-free pricing of weather derivatives based on fractional Brownian motion," Applied Mathematical Finance, Taylor & Francis Journals, vol. 10(4), pages 303-324.
    11. Tkacz Greg, 2001. "Estimating the Fractional Order of Integration of Interest Rates Using a Wavelet OLS Estimator," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, pages 1-15.
    12. Dong-Hyun Ahn & Robert F. Dittmar, 2002. "Quadratic Term Structure Models: Theory and Evidence," Review of Financial Studies, Society for Financial Studies, vol. 15(1), pages 243-288, March.
    13. Conley, Timothy G, et al, 1997. "Short-Term Interest Rates as Subordinated Diffusions," Review of Financial Studies, Society for Financial Studies, vol. 10(3), pages 525-577.
    14. Ang, Andrew & Bekaert, Geert, 2002. "Regime Switches in Interest Rates," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(2), pages 163-182, April.
    15. Pfann, Gerard A. & Schotman, Peter C. & Tschernig, Rolf, 1996. "Nonlinear interest rate dynamics and implications for the term structure," Journal of Econometrics, Elsevier, pages 149-176.
    16. Vasicek, Oldrich, 1977. "An equilibrium characterization of the term structure," Journal of Financial Economics, Elsevier, vol. 5(2), pages 177-188, November.
    17. Björk, Tomas & Hult, Henrik, 2005. "A Note on Wick Products and the Fractional Black-Scholes Model," SSE/EFI Working Paper Series in Economics and Finance 596, Stockholm School of Economics.
    18. David K. Backus, 1993. "Long-Memory Inflation Uncertainty: Evidence from the Term Structure of Interest Rates," Working Papers 93-04, New York University, Leonard N. Stern School of Business, Department of Economics.
    19. Dorje Brody & Joanna Syroka & Mihail Zervos, 2002. "Dynamical pricing of weather derivatives," Quantitative Finance, Taylor & Francis Journals, vol. 2(3), pages 189-198.
    20. David K. Backus & Stanley E. Zin, 1993. "Long-memory inflation uncertainty: evidence from the term structure of interest rates," Proceedings, Federal Reserve Bank of Cleveland, pages 681-708.
    21. Gregory R. Duffee, 2002. "Term Premia and Interest Rate Forecasts in Affine Models," Journal of Finance, American Finance Association, vol. 57(1), pages 405-443, February.
    22. Duan, Jin-Chuan & Simonato, Jean-Guy, 1999. "Estimating and Testing Exponential-Affine Term Structure Models by Kalman Filter," Review of Quantitative Finance and Accounting, Springer, pages 111-135.
    23. Torben G. Andersen & Luca Benzoni, 2010. "Do Bonds Span Volatility Risk in the U.S. Treasury Market? A Specification Test for Affine Term Structure Models," Journal of Finance, American Finance Association, vol. 65(2), pages 603-653, April.
    24. Comte, F. & Renault, E., 1996. "Long memory continuous time models," Journal of Econometrics, Elsevier, vol. 73(1), pages 101-149, July.
    25. Michael Johannes, 2004. "The Statistical and Economic Role of Jumps in Continuous-Time Interest Rate Models," Journal of Finance, American Finance Association, vol. 59(1), pages 227-260, February.
    26. Jefferson Duarte, 2004. "Evaluating an Alternative Risk Preference in Affine Term Structure Models," Review of Financial Studies, Society for Financial Studies, vol. 17(2), pages 379-404.
    27. Ahn, Dong-Hyun & Gao, Bin, 1999. "A Parametric Nonlinear Model of Term Structure Dynamics," Review of Financial Studies, Society for Financial Studies, vol. 12(4), pages 721-762.
    28. Shea, Gary S, 1991. "Uncertainty and Implied Variance Bounds in Long-Memory Models of the Interest Rate Term Structure," Empirical Economics, Springer, pages 287-312.
    29. Geyer, Alois L J & Pichler, Stefan, 1999. "A State-Space Approach to Estimate and Test Multifactor Cox-Ingersoll-Ross Models of the Term Structure," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 22(1), pages 107-130, Spring.
    Full references (including those not matched with items on IDEAS)

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hhb:aarbfi:2006-01. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Helle Vinbaek Stenholt). General contact details of provider: http://edirc.repec.org/data/ifhhadk.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.