IDEAS home Printed from
   My bibliography  Save this paper

The Flexible Substitution Logit: Uncovering Category Expansion and Share Impacts of Marketing Instruments


  • Qiang Liu

    (The Krannert School of Management, Purdue University)

  • Thomas J. Steenburgh

    (Harvard Business School, Marketing Unit)

  • Sachin Gupta

    (The Johnson Graduate School of Management, Cornell University)


Different instruments are relevant for different marketing objectives (category demand expansion or market share stealing). To help brand managers make informed marketing mix decisions, it is essential that marketing mix models appropriately measure the different effects of marketing instruments. Discrete choice models that have been applied to this problem might not be adequate because they possess the Invariant Proportion of Substitution (IPS) property, which imposes counter-intuitive restrictions on individual choice behavior. Indeed our empirical application to prescription writing choices of physicians in the hyperlipidemia category shows this to be the case. We find that three commonly used models that all suffer from the IPS restriction - the homogeneous logit model, the nested logit model, and the random coefficient logit model - lead to counter-intuitive estimates of the sources of demand gains due to increased marketing investments in Direct-to-Consumer Advertising (DTCA), detailing, and Meetings and Events (M&E). We then propose an alternative choice model specification that relaxes the IPS property - the so-called "flexible substitution" logit (FSL) model. The (random coefficient) FSL model predicts that sales gains from DTCA and M&E come primarily from the non-drug treatment (87.4% and 70.2% respectively), whereas gains from detailing come at the expense of competing drugs (84%). By contrast, the random coefficient logit model predicts that gains from DTCA, M&E and detailing all would come largely from competing drugs.

Suggested Citation

  • Qiang Liu & Thomas J. Steenburgh & Sachin Gupta, 2011. "The Flexible Substitution Logit: Uncovering Category Expansion and Share Impacts of Marketing Instruments," Harvard Business School Working Papers 12-012, Harvard Business School.
  • Handle: RePEc:hbs:wpaper:12-012

    Download full text from publisher

    File URL:
    Download Restriction: no

    References listed on IDEAS

    1. David R. Bell & Jeongwen Chiang & V. Padmanabhan, 1999. "The Decomposition of Promotional Response: An Empirical Generalization," Marketing Science, INFORMS, vol. 18(4), pages 504-526.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jones, Eugene, 2014. "An Empirical Assessment of Consumers’ Preferences for Coffee," Journal of Food Distribution Research, Food Distribution Research Society, vol. 45(2), pages 1-26, July.
    2. Steenkamp, J-B.E.M. & Nijs, V.R. & Hanssens, D.M. & Dekimpe, M.G., 2002. "Competitive Reactions and the Cross-Sales Effects of Advertising and Promotion," ERIM Report Series Research in Management ERS-2002-20-MKT, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    3. Celine Bonnet & Pierre Dubois & Sofia B. Villas Boas & Daniel Klapper, 2013. "Empirical Evidence on the Role of Nonlinear Wholesale Pricing and Vertical Restraints on Cost Pass-Through," The Review of Economics and Statistics, MIT Press, vol. 95(2), pages 500-515, May.
    4. Kim, Joon Ho & Kang, Kyung Ho, 2018. "The effect of promotion on gaming revenue: A study of the US casino industry," Tourism Management, Elsevier, vol. 65(C), pages 317-326.
    5. D. VAN DEN POEL & Jan J. DE SCHAMPHELAERE & G. WETS, 2003. "Direct and Indirect Effects of Retail Promotions," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 03/202, Ghent University, Faculty of Economics and Business Administration.
    6. Ola, Oreoluwa & Menapace, Luisa, 2020. "A meta-analysis understanding smallholder entry into high-value markets," World Development, Elsevier, vol. 135(C).
    7. Bernhard Baumgartner & Daniel Guhl & Thomas Kneib & Winfried J. Steiner, 2018. "Flexible estimation of time-varying effects for frequently purchased retail goods: a modeling approach based on household panel data," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 40(4), pages 837-873, October.
    8. Igal Hendel & Aviv Nevo, 2003. "The Post-Promotion Dip Puzzle: What do the Data Have to Say?," Quantitative Marketing and Economics (QME), Springer, vol. 1(4), pages 409-424, December.
    9. Bogomolova, Svetlana & Dunn, Steven & Trinh, Giang & Taylor, Jennifer & Volpe, Richard J., 2015. "Price promotion landscape in the US and UK: Depicting retail practice to inform future research agenda," Journal of Retailing and Consumer Services, Elsevier, vol. 25(C), pages 1-11.
    10. Neeraj Arora & Ty Henderson, 2007. "Embedded Premium Promotion: Why It Works and How to Make It More Effective," Marketing Science, INFORMS, vol. 26(4), pages 514-531, 07-08.
    11. David Besanko & Jean-Pierre Dubé & Sachin Gupta, 2005. "Own-Brand and Cross-Brand Retail Pass-Through," Marketing Science, INFORMS, vol. 24(1), pages 123-137, July.
    12. G Vani & N. Panchanatham, 2010. "Toothpaste Brands –A Study of consumer behavior in Bangalore city," Journal of Economics and Behavioral Studies, AMH International, vol. 1(1), pages 27-39.
    13. Guyt, Jonne & Gijsbrechts, Els, 2018. "On consumer choice patterns and the net impact of feature promotions," International Journal of Research in Marketing, Elsevier, vol. 35(3), pages 490-508.
    14. Sang Yong Kim & Richard Staelin, 1999. "Manufacturer Allowances and Retailer Pass-Through Rates in a Competitive Environment," Marketing Science, INFORMS, vol. 18(1), pages 59-76.
    15. Richards, Timothy J. & Gómez, Miguel I. & Pofahl, Geoffrey, 2012. "A Multiple-discrete/Continuous Model of Price Promotion," Journal of Retailing, Elsevier, vol. 88(2), pages 206-225.
    16. Vroegrijk, Mark & Gijsbrechts, Els & Campo, Katia, 2016. "Battling for the Household's Category Buck: Can Economy Private Labels Defend Supermarkets Against the Hard-Discounter Threat?," Journal of Retailing, Elsevier, vol. 92(3), pages 300-318.
    17. Haans, A.J. & Gijsbrechts, E., 2011. "One-deal-fits-all? : On category sales promotion effectiveness in smaller versus larger supermarkets," Other publications TiSEM 2c1a69db-bdfa-4988-a84c-4, Tilburg University, School of Economics and Management.
    18. Foxall, Gordon R. & Yan, Ji & Oliveira-Castro, Jorge M. & Wells, Victoria K., 2013. "Brand-related and situational influences on demand elasticity," Journal of Business Research, Elsevier, vol. 66(1), pages 73-81.
    19. Fok, D. & Horváth, C. & Paap, R. & Franses, Ph.H.B.F., 2004. "A hierarchical Bayes error correction model to explain dynamic effects," Econometric Institute Research Papers EI 2004-27, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    20. Robert Slonim & Ellen Garbarino, 2009. "Similarities and differences between stockpiling and reference effects," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 30(6), pages 351-371.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hbs:wpaper:12-012. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: HBS (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.