IDEAS home Printed from https://ideas.repec.org/p/ems/eureir/1476.html

A hierarchical Bayes error correction model to explain dynamic effects

Author

Listed:
  • Fok, D.
  • Horváth, C.
  • Paap, R.
  • Franses, Ph.H.B.F.

Abstract

For promotional planning and market segmentation it is important to understand the short-run and long-run effects of the marketing mix on category and brand sales. In this paper we put forward a sales response model to explain the differences in short-run and long-run effects of promotions on sales. The model consists of a vector autoregression rewritten in error-correction format which allows us to disentangle the long-run effects from the short-run effects. In a second level of the model, we correlate the short-run and long-run elasticities with various brand-specific and category-specific characteristics. The model is applied to weekly sales of 100 different brands in 25 product categories. Our empirical results allow us to make generalizing statements on the dynamic effects of promotions in a statistically coherent way.

Suggested Citation

  • Fok, D. & Horváth, C. & Paap, R. & Franses, Ph.H.B.F., 2004. "A hierarchical Bayes error correction model to explain dynamic effects," Econometric Institute Research Papers EI 2004-27, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
  • Handle: RePEc:ems:eureir:1476
    as

    Download full text from publisher

    File URL: https://repub.eur.nl/pub/1476/EI200427.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Moriarty, Mark M., 1985. "Transfer function analysis of the relationship between advertising and sales: A synthesis of prior research," Journal of Business Research, Elsevier, vol. 13(3), pages 247-257, June.
    2. David R. Bell & Jeongwen Chiang & V. Padmanabhan, 1999. "The Decomposition of Promotional Response: An Empirical Generalization," Marketing Science, INFORMS, vol. 18(4), pages 504-526.
    3. Gurumurthy Kalyanaram & Russell S. Winer, 1995. "Empirical Generalizations from Reference Price Research," Marketing Science, INFORMS, vol. 14(3_supplem), pages 161-169.
    4. Alan L. Montgomery, 1997. "Creating Micro-Marketing Pricing Strategies Using Supermarket Scanner Data," Marketing Science, INFORMS, vol. 16(4), pages 315-337.
    5. Robert C. Blattberg & Richard Briesch & Edward J. Fox, 1995. "How Promotions Work," Marketing Science, INFORMS, vol. 14(3_supplem), pages 122-132.
    6. Richard Paap & Philip Hans Franses, 2000. "A dynamic multinomial probit model for brand choice with different long-run and short-run effects of marketing-mix variables," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 15(6), pages 717-744.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. van Heerde, H.J. & Dekimpe, M.G. & Putsis, W.P., 2004. "Marketing Models and the Lucas Critique," ERIM Report Series Research in Management ERS-2004-080-MKT, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    2. Koen Pauwels & Imran Currim & Marnik Dekimpe & Dominique Hanssens & Natalie Mizik & Eric Ghysels & Prasad Naik, 2004. "Modeling Marketing Dynamics by Time Series Econometrics," Marketing Letters, Springer, vol. 15(4), pages 167-183, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dawes, John G., 2012. "Brand-Pack Size Cannibalization Arising from Temporary Price Promotions," Journal of Retailing, Elsevier, vol. 88(3), pages 343-355.
    2. Praveen K. Kopalle & Carl F. Mela & Lawrence Marsh, 1999. "The Dynamic Effect of Discounting on Sales: Empirical Analysis and Normative Pricing Implications," Marketing Science, INFORMS, vol. 18(3), pages 317-332.
    3. Breugelmans, Els & Campo, Katia, 2016. "Cross-Channel Effects of Price Promotions: An Empirical Analysis of the Multi-Channel Grocery Retail Sector," Journal of Retailing, Elsevier, vol. 92(3), pages 333-351.
    4. David Besanko & Jean-Pierre Dubé & Sachin Gupta, 2005. "Own-Brand and Cross-Brand Retail Pass-Through," Marketing Science, INFORMS, vol. 24(1), pages 123-137, July.
    5. Vincent R. Nijs & Shuba Srinivasan & Koen Pauwels, 2007. "Retail-Price Drivers and Retailer Profits," Marketing Science, INFORMS, vol. 26(4), pages 473-487, 07-08.
    6. Kamel Jedidi & Carl F. Mela & Sunil Gupta, 1999. "Managing Advertising and Promotion for Long-Run Profitability," Marketing Science, INFORMS, vol. 18(1), pages 1-22.
    7. Haans, Hans & Gijsbrechts, Els, 2011. "“One-deal-fits-all?” On Category Sales Promotion Effectiveness in Smaller versus Larger Supermarkets," Journal of Retailing, Elsevier, vol. 87(4), pages 427-443.
    8. Koen Pauwels & Shuba Srinivasan & Philip Hans Franses, 2007. "When Do Price Thresholds Matter in Retail Categories?," Marketing Science, INFORMS, vol. 26(1), pages 83-100, 01-02.
    9. Eric T. Anderson & Duncan I. Simester, 2004. "Long-Run Effects of Promotion Depth on New Versus Established Customers: Three Field Studies," Marketing Science, INFORMS, vol. 23(1), pages 4-20, February.
    10. Jorge Mejia & Anandasivam Gopal & Michael Trusov, 2020. "Deal or No Deal? Online Deals, Retailer Heterogeneity, and Brand Evaluations in a Competitive Environment," Information Systems Research, INFORMS, vol. 31(4), pages 1087-1106, December.
    11. Harald Van Heerde & Kristiaan Helsen & Marnik G. Dekimpe, 2007. "The Impact of a Product-Harm Crisis on Marketing Effectiveness," Marketing Science, INFORMS, vol. 26(2), pages 230-245, 03-04.
    12. Parreño-Selva, Josefa & Mas-Ruiz, Francisco J. & Ruiz-Conde, Enar, 2017. "The effects of price promotion on relative virtue and vice food products," International Food and Agribusiness Management Review, International Food and Agribusiness Management Association, vol. 20(5).
    13. Jean-Pierre Dubé, 2004. "Multiple Discreteness and Product Differentiation: Demand for Carbonated Soft Drinks," Marketing Science, INFORMS, vol. 23(1), pages 66-81, September.
    14. Horváth, C. & Fok, D., 2008. "Moderating Factors of Immediate, Dynamic, and Long-run Cross-Price Effects," ERIM Report Series Research in Management ERS-2008-042-MKT, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    15. David R. Bell & James M. Lattin, 2000. "Looking for Loss Aversion in Scanner Panel Data: The Confounding Effect of Price Response Heterogeneity," Marketing Science, INFORMS, vol. 19(2), pages 185-200, May.
    16. Srinivasan, S. & Pauwels, K.H. & Hanssens, D.M. & Dekimpe, M.G., 2002. "Do Promotions Benefit Manufacturers, Retailers or Both?," ERIM Report Series Research in Management ERS-2002-21-MKT, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    17. Dobson, Paul W. & Waterson, Michael, 2008. "Chain-Store Competition: Customized vs. Uniform Pricing," Economic Research Papers 269789, University of Warwick - Department of Economics.
    18. Fok, D. & Paap, R. & Horváth, C. & Franses, Ph.H.B.F., 2005. "A Hierarchical Bayes Error Correction Model to Explain Dynamic Effects of Price Changes," ERIM Report Series Research in Management ERS-2005-047-MKT, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    19. Kim, Joon Ho & Kang, Kyung Ho, 2018. "The effect of promotion on gaming revenue: A study of the US casino industry," Tourism Management, Elsevier, vol. 65(C), pages 317-326.
    20. Bernhard Baumgartner & Daniel Guhl & Thomas Kneib & Winfried J. Steiner, 2018. "Flexible estimation of time-varying effects for frequently purchased retail goods: a modeling approach based on household panel data," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 40(4), pages 837-873, October.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ems:eureir:1476. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: RePub The email address of this maintainer does not seem to be valid anymore. Please ask RePub to update the entry or send us the correct address (email available below). General contact details of provider: https://edirc.repec.org/data/feeurnl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.