IDEAS home Printed from https://ideas.repec.org/p/fip/fednsr/101430.html
   My bibliography  Save this paper

Nonlinear Micro Income Processes with Macro Shocks

Author

Abstract

We propose a nonlinear framework to study the dynamic transmission of aggregate and idiosyncratic shocks to household income that exploits both macro and micro data. Our approach allows us to examine empirically the following questions: (a) How do business-cycle fluctuations modulate the persistence of heterogeneous individual histories and the risk faced by households? (b) How do aggregate and idiosyncratic shocks propagate over time for households in different macro and micro states? (c) How do these shocks shape the cost of business-cycle risk? We develop new identification and estimation techniques and provide a detailed empirical analysis combining macro time series for the U.S. and a time series of household panels from the PSID.

Suggested Citation

  • Manuel Arellano & Richard Blundell & Stéphane Bonhomme & Martín Almuzara, 2025. "Nonlinear Micro Income Processes with Macro Shocks," Staff Reports 1162, Federal Reserve Bank of New York.
  • Handle: RePEc:fip:fednsr:101430
    DOI: 10.59576/sr.1162
    as

    Download full text from publisher

    File URL: https://www.newyorkfed.org/medialibrary/media/research/staff_reports/sr1162.pdf
    File Function: Full text
    Download Restriction: no

    File URL: https://www.newyorkfed.org/research/staff_reports/sr1162.html
    File Function: Summary
    Download Restriction: no

    File URL: https://libkey.io/10.59576/sr.1162?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Arellano, Manuel & Blundell, Richard & Bonhomme, Stéphane & Light, Jack, 2024. "Heterogeneity of consumption responses to income shocks in the presence of nonlinear persistence," Journal of Econometrics, Elsevier, vol. 240(2).
    2. Thomas Winberry, 2018. "A method for solving and estimating heterogeneous agent macro models," Quantitative Economics, Econometric Society, vol. 9(3), pages 1123-1151, November.
    3. J. Durbin, 2002. "A simple and efficient simulation smoother for state space time series analysis," Biometrika, Biometrika Trust, vol. 89(3), pages 603-616, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Laura Liu & Mikkel Plagborg-M{o}ller, 2021. "Full-Information Estimation of Heterogeneous Agent Models Using Macro and Micro Data," Papers 2101.04771, arXiv.org, revised Jun 2022.
    2. Laura Liu & Mikkel Plagborg‐Møller, 2023. "Full‐information estimation of heterogeneous agent models using macro and micro data," Quantitative Economics, Econometric Society, vol. 14(1), pages 1-35, January.
    3. Takahashi, Makoto & Watanabe, Toshiaki & Omori, Yasuhiro, 2016. "Volatility and quantile forecasts by realized stochastic volatility models with generalized hyperbolic distribution," International Journal of Forecasting, Elsevier, vol. 32(2), pages 437-457.
    4. Xianguo HUANG & Roberto LEON-GONZALEZ & Somrasri YUPHO, 2013. "Financial Integration from a Time-Varying Cointegration Perspective," Asian Journal of Empirical Research, Asian Economic and Social Society, vol. 3(12), pages 1473-1487.
    5. Yujie Yang & Chenxing Zhang & Wenwen Hou, 2023. "Two-Country HANK and trade friction," PLOS ONE, Public Library of Science, vol. 18(7), pages 1-37, July.
    6. Laura E. Jackson & M. Ayhan Kose & Christopher Otrok & Michael T. Owyang, 2016. "Specification and Estimation of Bayesian Dynamic Factor Models: A Monte Carlo Analysis with an Application to Global House Price Comovement," Advances in Econometrics, in: Dynamic Factor Models, volume 35, pages 361-400, Emerald Group Publishing Limited.
    7. Del Negro, Marco & Giannone, Domenico & Giannoni, Marc P. & Tambalotti, Andrea, 2019. "Global trends in interest rates," Journal of International Economics, Elsevier, vol. 118(C), pages 248-262.
    8. Aloy Marcel & Dufrénot Gilles & Tong Charles Lai & Peguin-Feissolle Anne, 2013. "A smooth transition long-memory model," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 17(3), pages 281-296, May.
    9. Rob Luginbuhl, 2020. "Estimation of the Financial Cycle with a Rank-Reduced Multivariate State-Space Model," CPB Discussion Paper 409, CPB Netherlands Bureau for Economic Policy Analysis.
    10. Martín Almuzara & Dante Amengual & Gabriele Fiorentini & Enrique Sentana, 2024. "GDP Solera: The Ideal Vintage Mix," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 42(3), pages 984-997, July.
    11. Stefano Fasani & Giuseppe Pagano Giorgianni & Valeria Patella & Lorenza Rossi, 2024. "Belief Distortions and Disagreement about Inflation," Working Paper series 24-08, Rimini Centre for Economic Analysis, revised May 2025.
    12. Bhagath Cheela & André DeHon & Jesús Fernández‐Villaverde & Alessandro Peri, 2025. "Programming FPGAs for economics: An introduction to electrical engineering economics," Quantitative Economics, Econometric Society, vol. 16(1), pages 49-87, January.
    13. Vasco Cúrdia & Marco Del Negro & Daniel L. Greenwald, 2014. "Rare Shocks, Great Recessions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(7), pages 1031-1052, November.
    14. Falk Bräuning & Siem Jan Koopman, 2016. "The dynamic factor network model with an application to global credit risk," Working Papers 16-13, Federal Reserve Bank of Boston.
    15. Jebabli, Ikram & Arouri, Mohamed & Teulon, Frédéric, 2014. "On the effects of world stock market and oil price shocks on food prices: An empirical investigation based on TVP-VAR models with stochastic volatility," Energy Economics, Elsevier, vol. 45(C), pages 66-98.
    16. Mesters, G. & Koopman, S.J., 2014. "Generalized dynamic panel data models with random effects for cross-section and time," Journal of Econometrics, Elsevier, vol. 180(2), pages 127-140.
    17. Shinichiro Shirota & Yashiro Omori & Hedibert Lopes & Haixiang Piao, 2016. "Cholesky Realized Stochasti Volatility Model," Business and Economics Working Papers 224, Unidade de Negocios e Economia, Insper.
    18. Soudeep Deb & Rishideep Roy & Shubhabrata Das, 2024. "Forecasting elections from partial information using a Bayesian model for a multinomial sequence of data," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(6), pages 1814-1834, September.
    19. Francisco Barillas & Kristoffer Nimark, 2012. "Speculation, risk premia and expectations in the yield curve," Economics Working Papers 1337, Department of Economics and Business, Universitat Pompeu Fabra, revised Nov 2013.
    20. Iacopini, Matteo & Poon, Aubrey & Rossini, Luca & Zhu, Dan, 2023. "Bayesian mixed-frequency quantile vector autoregression: Eliciting tail risks of monthly US GDP," Journal of Economic Dynamics and Control, Elsevier, vol. 157(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    JEL classification:

    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fip:fednsr:101430. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Gabriella Bucciarelli (email available below). General contact details of provider: https://edirc.repec.org/data/frbnyus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.