IDEAS home Printed from https://ideas.repec.org/p/fip/fedhwp/96632.html
   My bibliography  Save this paper

A Robust Method for Microforecasting and Estimation of Random Effects

Author

Abstract

We propose a method for forecasting individual outcomes and estimating random effects in linear panel data models and value-added models when the panel has a short time dimension. The method is robust, trivial to implement and requires minimal assumptions. The idea is to take a weighted average of time series- and pooled forecasts/estimators, with individual weights that are based on time series information. We show the forecast optimality of individual weights, both in terms of minimax-regret and of mean squared forecast error. We then provide feasible weights that ensure good performance under weaker assumptions than those required by existing approaches. Unlike existing shrinkage methods, our approach borrows the strength - but avoids the tyranny - of the majority, by targeting individual (instead of group) accuracy and letting the data decide how much strength each individual should borrow. Unlike existing empirical Bayesian methods, our frequentist approach requires no distributional assumptions, and, in fact, it is particularly advantageous in the presence of features such as heavy tails that would make a fully nonparametric procedure problematic.

Suggested Citation

  • Raffaella Giacomini & Sokbae Lee & Silvia Sarpietro, 2023. "A Robust Method for Microforecasting and Estimation of Random Effects," Working Paper Series WP 2023-26, Federal Reserve Bank of Chicago.
  • Handle: RePEc:fip:fedhwp:96632
    DOI: 10.21033/wp-2023-26
    as

    Download full text from publisher

    File URL: https://doi.org/10.21033/wp-2023-26
    Download Restriction: no

    File URL: https://libkey.io/10.21033/wp-2023-26?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Fatih Guvenen & Fatih Karahan & Serdar Ozkan & Jae Song, 2015. "What Do Data on Millions of U.S. Workers Reveal about Life-Cycle Earnings Risk?," NBER Working Papers 20913, National Bureau of Economic Research, Inc.
    2. Costas Meghir & Luigi Pistaferri, 2004. "Income Variance Dynamics and Heterogeneity," Econometrica, Econometric Society, vol. 72(1), pages 1-32, January.
    3. Martin Browning & Mette Ejrnæs & Javier Alvarez, 2010. "Modelling Income Processes with Lots of Heterogeneity," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 77(4), pages 1353-1381.
    4. Raj Chetty & Nathaniel Hendren, 2018. "The Impacts of Neighborhoods on Intergenerational Mobility II: County-Level Estimates," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 133(3), pages 1163-1228.
    5. Bradley Efron, 2016. "Empirical Bayes deconvolution estimates," Biometrika, Biometrika Trust, vol. 103(1), pages 1-20.
    6. M. Hashem Pesaran & Andreas Pick & Allan Timmermann, 2022. "Forecasting With Panel Data: Estimation Uncertainty Versus Parameter Heterogeneity," CESifo Working Paper Series 9690, CESifo.
    7. Thomas J. Kane & Douglas O. Staiger, 2008. "Estimating Teacher Impacts on Student Achievement: An Experimental Evaluation," NBER Working Papers 14607, National Bureau of Economic Research, Inc.
    8. Joshua D. Angrist & Peter D. Hull & Parag A. Pathak & Christopher R. Walters, 2017. "Leveraging Lotteries for School Value-Added: Testing and Estimation," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 132(2), pages 871-919.
    9. Laura Liu & Hyungsik Roger Moon & Frank Schorfheide, 2020. "Forecasting With Dynamic Panel Data Models," Econometrica, Econometric Society, vol. 88(1), pages 171-201, January.
    10. Patrick Kline & Evan K Rose & Christopher R Walters, 2022. "Systemic Discrimination Among Large U.S. Employers [“Teachers and Student Achievement in the Chicago Public High Schools,”]," The Quarterly Journal of Economics, Oxford University Press, vol. 137(4), pages 1963-2036.
    11. Gary Chamberlain & Keisuke Hirano, 1999. "Predictive Distributions based on Longitudinal Earnings Data," Annals of Economics and Statistics, GENES, issue 55-56, pages 211-242.
    12. Jiaying Gu & Roger Koenker, 2017. "Unobserved Heterogeneity in Income Dynamics: An Empirical Bayes Perspective," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(1), pages 1-16, January.
    13. Charles F. Manski, 2021. "Econometrics for Decision Making: Building Foundations Sketched by Haavelmo and Wald," Econometrica, Econometric Society, vol. 89(6), pages 2827-2853, November.
    14. Manuel Arellano & Stephen Bond, 1991. "Some Tests of Specification for Panel Data: Monte Carlo Evidence and an Application to Employment Equations," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 58(2), pages 277-297.
    15. Jason M. Fletcher & Leora I. Horwitz & Elizabeth Bradley, 2014. "Estimating the Value Added of Attending Physicians on Patient Outcomes," NBER Working Papers 20534, National Bureau of Economic Research, Inc.
    16. repec:adr:anecst:y:1999:i:55-56:p:08 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pietro Giorgio Lovaglio, 2025. "Cross‐Learning With Panel Data Modeling for Stacking and Forecast Time Series Employment in Europe," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 44(2), pages 753-780, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Raffaella Giacomini & Sokbae Lee & Silvia Sarpietro, 2023. "Individual Shrinkage for Random Effects," Papers 2308.01596, arXiv.org, revised May 2025.
    2. Walters, Christopher, 2024. "Empirical Bayes methods in labor economics," Handbook of Labor Economics,, Elsevier.
    3. Bonhomme, Stéphane & Denis, Angela, 2024. "Estimating heterogeneous effects: Applications to labor economics," Labour Economics, Elsevier, vol. 91(C).
    4. John Carter Braxton & Kyle F. Herkenhoff & Jonathan Rothbaum & Lawrence Schmidt, 2021. "Changing Income Risk across the US Skill Distribution: Evidence from a Generalized Kalman Filter," Opportunity and Inclusive Growth Institute Working Papers 55, Federal Reserve Bank of Minneapolis.
    5. Tian Xie, 2025. "Automatic Inference for Value-Added Regressions," Papers 2503.19178, arXiv.org.
    6. M. Hashem Pesaran & Liying Yang, 2024. "Heterogeneous autoregressions in short T panel data models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(7), pages 1359-1378, November.
    7. Botosaru, Irene, 2023. "Time-varying unobserved heterogeneity in earnings shocks," Journal of Econometrics, Elsevier, vol. 235(2), pages 1378-1393.
    8. Manuel Arellano & Stéphane Bonhomme, 2023. "Recovering Latent Variables by Matching," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 118(541), pages 693-706, January.
    9. Hospido, Laura, 2015. "Wage dynamics in the presence of unobserved individual and job heterogeneity," Labour Economics, Elsevier, vol. 33(C), pages 81-93.
    10. Antonio Pacifico, 2023. "Obesity and labour market outcomes in Italy: a dynamic panel data evidence with correlated random effects," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 24(4), pages 557-574, June.
    11. Alvarez, Javier & Arellano, Manuel, 2022. "Robust likelihood estimation of dynamic panel data models," Journal of Econometrics, Elsevier, vol. 226(1), pages 21-61.
    12. L. Hospido, 2012. "Modelling heterogeneity and dynamics in the volatility of individual wages," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(3), pages 386-414, April.
    13. Kline, Patrick & Walters, Christopher, 2019. "Audits as Evidence: Experiments, Ensembles, and Enforcement," Institute for Research on Labor and Employment, Working Paper Series qt3z72m9kn, Institute of Industrial Relations, UC Berkeley.
    14. repec:hal:spmain:info:hdl:2441/f6h8764enu2lskk9p2m9mgp8l is not listed on IDEAS
    15. Timothy B. Armstrong & Michal Kolesár & Mikkel Plagborg‐Møller, 2022. "Robust Empirical Bayes Confidence Intervals," Econometrica, Econometric Society, vol. 90(6), pages 2567-2602, November.
    16. Geert Dhaene & Koen Jochmans, 2015. "Split-panel Jackknife Estimation of Fixed-effect Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 82(3), pages 991-1030.
    17. Laura Liu & Hyungsik Roger Moon & Frank Schorfheide, 2020. "Forecasting With Dynamic Panel Data Models," Econometrica, Econometric Society, vol. 88(1), pages 171-201, January.
    18. Anders Frederiksen & Timothy Halliday & Alexander K. Koch, 2016. "Within- and Cross-Firm Mobility and Earnings Growth," ILR Review, Cornell University, ILR School, vol. 69(2), pages 320-353, March.
    19. Costas Meghir & Luigi Pistaferri, 2004. "Income Variance Dynamics and Heterogeneity," Econometrica, Econometric Society, vol. 72(1), pages 1-32, January.
    20. Christine Mulhern & Isaac M. Opper, 2021. "Measuring and Summarizing the Multiple Dimensions of Teacher Effectiveness," CESifo Working Paper Series 9263, CESifo.
    21. Theloudis, Alexandros, 2021. "Consumption inequality across heterogeneous families," European Economic Review, Elsevier, vol. 136(C).

    More about this item

    Keywords

    Forecast combination; Robustness;

    JEL classification:

    • C10 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - General
    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fip:fedhwp:96632. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Lauren Wiese (email available below). General contact details of provider: https://edirc.repec.org/data/frbchus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.