IDEAS home Printed from
   My bibliography  Save this paper

The Stambaugh bias in panel predictive regressions


  • Erik Hjalmarsson


This paper analyzes predictive regressions in a panel data setting. The standard fixed effects estimator suffers from a small sample bias, which is the analogue of the Stambaugh bias in time-series predictive regressions. Monte Carlo evidence shows that the bias and resulting size distortions can be severe. A new bias-corrected estimator is proposed, which is shown to work well in finite samples and to lead to approximately normally distributed t-statistics. Overall, the results show that the econometric issues associated with predictive regressions when using time-series data to a large extent also carry over to the panel case. The results are illustrated with an application to predictability in international stock indices.

Suggested Citation

  • Erik Hjalmarsson, 2007. "The Stambaugh bias in panel predictive regressions," International Finance Discussion Papers 914, Board of Governors of the Federal Reserve System (U.S.).
  • Handle: RePEc:fip:fedgif:914

    Download full text from publisher

    File URL:
    Download Restriction: no

    File URL:
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    1. Moon, Hyungsik R. & Phillips, Peter C.B., 2000. "Estimation Of Autoregressive Roots Near Unity Using Panel Data," Econometric Theory, Cambridge University Press, vol. 16(06), pages 927-997, December.
    2. repec:rus:hseeco:52003 is not listed on IDEAS
    3. Polk, Christopher & Thompson, Samuel & Vuolteenaho, Tuomo, 2006. "Cross-sectional forecasts of the equity premium," Journal of Financial Economics, Elsevier, vol. 81(1), pages 101-141, July.
    4. Campbell, John Y. & Yogo, Motohiro, 2006. "Efficient tests of stock return predictability," Journal of Financial Economics, Elsevier, vol. 81(1), pages 27-60, July.
    5. Gregory Mankiw, N. & Shapiro, Matthew D., 1986. "Do we reject too often? : Small sample properties of tests of rational expectations models," Economics Letters, Elsevier, vol. 20(2), pages 139-145.
    6. Lewellen, Jonathan, 2004. "Predicting returns with financial ratios," Journal of Financial Economics, Elsevier, vol. 74(2), pages 209-235, November.
    7. Randolph B. Cohen & Christopher Polk & Tuomo Vuolteenaho, 2003. "The Value Spread," Journal of Finance, American Finance Association, vol. 58(2), pages 609-642, April.
    8. Stambaugh, Robert F., 1999. "Predictive regressions," Journal of Financial Economics, Elsevier, vol. 54(3), pages 375-421, December.
    9. Peter C. B. Phillips & Hyungsik R. Moon, 1999. "Linear Regression Limit Theory for Nonstationary Panel Data," Econometrica, Econometric Society, vol. 67(5), pages 1057-1112, September.
    10. Hjalmarsson, Erik, 2010. "Predicting Global Stock Returns," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 45(01), pages 49-80, February.
    11. Andrew Ang & Geert Bekaert, 2001. "Stock Return Predictability: Is it There?," NBER Working Papers 8207, National Bureau of Economic Research, Inc.
    12. Cavanagh, Christopher L. & Elliott, Graham & Stock, James H., 1995. "Inference in Models with Nearly Integrated Regressors," Econometric Theory, Cambridge University Press, vol. 11(05), pages 1131-1147, October.
    13. repec:cup:etheor:v:11:y:1995:i:5:p:1131-47 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Westerlund, Joakim & Narayan, Paresh, 2016. "Testing for predictability in panels of any time series dimension," International Journal of Forecasting, Elsevier, vol. 32(4), pages 1162-1177.
    2. Westerlund, Joakim & Narayan, Paresh Kumar & Zheng, Xinwei, 2015. "Testing for stock return predictability in a large Chinese panel," Emerging Markets Review, Elsevier, vol. 24(C), pages 81-100.
    3. Westerlund J. & Smeekes S., 2013. "Robust block bootstrap panel predictability tests," Research Memorandum 060, Maastricht University, Graduate School of Business and Economics (GSBE).
    4. repec:eee:intfin:v:52:y:2018:i:c:p:152-172 is not listed on IDEAS
    5. Karabiyik, Hande & Westerlund, Joakim & Narayan, Paresh, 2016. "On the estimation and testing of predictive panel regressions," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 45(C), pages 115-125.

    More about this item


    Panel analysis ; Stocks;

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fip:fedgif:914. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Franz Osorio). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.