IDEAS home Printed from https://ideas.repec.org/p/fem/femwpa/2013.71.html
   My bibliography  Save this paper

Smart-Grids and Climate Change. Consumer adoption of smart energy behaviour: a system dynamics approach to evaluate the mitigation potential

Author

Listed:
  • Elena Claire Ricci

    (Università degli Studi di Milano, Centro Euro-Mediterraneo sui Cambiamenti Climatici and Fondazione Eni Enrico Mattei)

Abstract

adoption of “Smart Energy Behaviour”. Within this term we include different levels of: i) shift in electricity consumption towards less costly-less polluting and congestioning hours; ii) the reduction of mainly wasteful electricity consumption, that maintains similar levels of comfort; iii) the enrolment in demand response programs; iv) electricity generation via residential micro-photovoltaic (PV) systems. These behavioural changes are triggered by the installation of advanced metering systems and a tariff policy that prices electricity according to time-of-use. The context analysed is that of Italy, where the largest diffusion of smart meters has taken place. We perform a set of 2500 simulations of our model with stochastic parameters to take into account the uncertainty in their estimation, to find that on average consumer involvement may induce on aggregate a shift in residential electricity consumption of 13.0% by 2020 and of 29.6% by 2030; and reduction in residential electricity consumption (just by reducing wasteful consumption) of 2.5% by 2020 and 9.2% by 2030. These consumption changes may have strong impacts on the system operating costs (in the order of 380 M€/y by 2020, 1203 M€/y by 2030), on the CO2 emissions (in the order of 1.56 MtonCO2/y by 2020, 5.01 Mton CO2/y by 2030), confirming the value of consumer participation.

Suggested Citation

  • Elena Claire Ricci, 2013. "Smart-Grids and Climate Change. Consumer adoption of smart energy behaviour: a system dynamics approach to evaluate the mitigation potential," Working Papers 2013.71, Fondazione Eni Enrico Mattei.
  • Handle: RePEc:fem:femwpa:2013.71
    as

    Download full text from publisher

    File URL: https://feem-media.s3.eu-central-1.amazonaws.com/wp-content/uploads/NDL2013-071.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. D. J. Hamilton & W. J. Nuttall & F. A. Roques, 2009. "Agent-Based Simulation of Technology Adoption: Possible phenomenologies associated with consumer shifts to local electricity generation," Working Papers EPRG 0923, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    2. Luis Olmos & Sophia Ruester & Siok Jen Liong & Jean-Michel Glachant, 2010. "Energy Efficiency Actions Related to the Rollout of Smart Meters for Small Consumers," RSCAS Working Papers 2010/02fsr, European University Institute.
    3. Kempton, Willett & Layne, Linda L., 1994. "The consumer's energy analysis environment," Energy Policy, Elsevier, vol. 22(10), pages 857-866, October.
    4. Tao Zhang & William J. Nuttall, 2007. "An Agent Based Simulation of Smart Metering Technology Adoption," Working Papers EPRG 0727, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    5. Hartway, Rob & Price, Snuller & Woo, C.K, 1999. "Smart meter, customer choice and profitable time-of-use rate option," Energy, Elsevier, vol. 24(10), pages 895-903.
    6. Kempton, Willett & Montgomery, Laura, 1982. "Folk quantification of energy," Energy, Elsevier, vol. 7(10), pages 817-827.
    7. Allcott, Hunt, 2011. "Social norms and energy conservation," Journal of Public Economics, Elsevier, vol. 95(9-10), pages 1082-1095, October.
    8. Allcott, Hunt, 2011. "Social norms and energy conservation," Journal of Public Economics, Elsevier, vol. 95(9), pages 1082-1095.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ricci, Elena Claire & Banterle, Alessandro, 2020. "Do major climate change-related public events have an impact on consumer choices?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 126(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Komatsu, Hidenori & Nishio, Ken-ichiro, 2015. "An experimental study on motivational change for electricity conservation by normative messages," Applied Energy, Elsevier, vol. 158(C), pages 35-43.
    2. Laura Abrardi, 2019. "Behavioral barriers and the energy efficiency gap: a survey of the literature," Economia e Politica Industriale: Journal of Industrial and Business Economics, Springer;Associazione Amici di Economia e Politica Industriale, vol. 46(1), pages 25-43, March.
    3. Chen, Victor L. & Delmas, Magali A. & Kaiser, William J. & Locke, Stephen L., 2015. "What can we learn from high-frequency appliance-level energy metering? Results from a field experiment," Energy Policy, Elsevier, vol. 77(C), pages 164-175.
    4. Batalla-Bejerano, Joan & Trujillo-Baute, Elisa & Villa-Arrieta, Manuel, 2020. "Smart meters and consumer behaviour: Insights from the empirical literature," Energy Policy, Elsevier, vol. 144(C).
    5. Rockstuhl, Sebastian & Wenninger, Simon & Wiethe, Christian & Häckel, Björn, 2021. "Understanding the risk perception of energy efficiency investments: Investment perspective vs. energy bill perspective," Energy Policy, Elsevier, vol. 159(C).
    6. Ricci, Elena Claire & Banterle, Alessandro, 2020. "Do major climate change-related public events have an impact on consumer choices?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 126(C).
    7. Weber, Sylvain & Puddu, Stefano & Pacheco, Diana, 2017. "Move it! How an electric contest motivates households to shift their load profile," Energy Economics, Elsevier, vol. 68(C), pages 255-270.
    8. Schleich, Joachim & Klobasa, Marian & Gölz, Sebastian & Brunner, Marc, 2013. "Effects of feedback on residential electricity demand—Findings from a field trial in Austria," Energy Policy, Elsevier, vol. 61(C), pages 1097-1106.
    9. Alberts, Genevieve & Gurguc, Zeynep & Koutroumpis, Pantelis & Martin, Ralf & Muûls, Mirabelle & Napp, Tamaryn, 2016. "Competition and norms: A self-defeating combination?," Energy Policy, Elsevier, vol. 96(C), pages 504-523.
    10. Gołębiowska, Bernadeta & Bartczak, Anna & Budziński, Wiktor, 2021. "Impact of social comparison on preferences for Demand Side Management in Poland," Energy Policy, Elsevier, vol. 149(C).
    11. Bernadeta Gołębiowska & Anna Bartczak & Wiktor Budziński, 2019. "Impact of social comparison on DSM in Poland," Working Papers 2019-10, Faculty of Economic Sciences, University of Warsaw.
    12. Lillemo, Shuling Chen, 2014. "Measuring the effect of procrastination and environmental awareness on households' energy-saving behaviours: An empirical approach," Energy Policy, Elsevier, vol. 66(C), pages 249-256.
    13. Chatzigeorgiou, I.M. & Andreou, G.T., 2021. "A systematic review on feedback research for residential energy behavior change through mobile and web interfaces," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    14. Beatty, Timothy K.M. & Katare, Bhagyashree, 2018. "Low-cost approaches to increasing gym attendance," Journal of Health Economics, Elsevier, vol. 61(C), pages 63-76.
    15. Ajla Cosic & Hana Cosic & Sebastian Ille, 2018. "Can nudges affect students' green behaviour? A field experiment," Journal of Behavioral Economics for Policy, Society for the Advancement of Behavioral Economics (SABE), vol. 2(1), pages 107-111, March.
    16. Bartels, Lara & Kesternich, Martin, 2022. "Motivate the crowd or crowd- them out? The impact of local government spending on the voluntary provision of a green public good," ZEW Discussion Papers 22-040, ZEW - Leibniz Centre for European Economic Research.
    17. Hinker, Jonas & Hemkendreis, Christian & Drewing, Emily & März, Steven & Hidalgo Rodríguez, Diego I. & Myrzik, Johanna M.A., 2017. "A novel conceptual model facilitating the derivation of agent-based models for analyzing socio-technical optimality gaps in the energy domain," Energy, Elsevier, vol. 137(C), pages 1219-1230.
    18. Ingar Haaland & Christopher Roth & Johannes Wohlfart, 2023. "Designing Information Provision Experiments," Journal of Economic Literature, American Economic Association, vol. 61(1), pages 3-40, March.
    19. Brown, Joe & Hamoudi, Amar & Jeuland, Marc & Turrini, Gina, 2017. "Seeing, believing, and behaving: Heterogeneous effects of an information intervention on household water treatment," Journal of Environmental Economics and Management, Elsevier, vol. 86(C), pages 141-159.
    20. Bamieh, Omar & Cintolesi, Andrea, 2021. "Intergenerational transmission in regulated professions and the role of familism," Journal of Economic Behavior & Organization, Elsevier, vol. 192(C), pages 857-879.

    More about this item

    Keywords

    Smart-Grids; Demand Response; Demand Management; System Dynamics; Consumer Choices; Climate Policy;
    All these keywords.

    JEL classification:

    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • Q42 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Alternative Energy Sources
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fem:femwpa:2013.71. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Alberto Prina Cerai (email available below). General contact details of provider: https://edirc.repec.org/data/feemmit.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.