IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Forecasting in marketing

  • Franses, Ph.H.B.F.

With the advent of advanced data collection techniques, there is an increased interest in using econometric models to support decisions in marketing. Due to the sometimes specific nature of variables in marketing, the discipline uses econometric models that are rarely, if ever, used elsewhere. This chapter deals with techniques to derive forecasts from these models. Due to the intrinsic non-linear nature of these models, these techniques draw heavliy on simulation techniques.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://repub.eur.nl/pub/1631/ei200440.pdf
Download Restriction: no

Paper provided by Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute in its series Econometric Institute Research Papers with number EI 2004-40.

as
in new window

Length:
Date of creation: 22 Sep 2004
Date of revision:
Handle: RePEc:ems:eureir:1631
Contact details of provider: Postal: Postbus 1738, 3000 DR Rotterdam
Phone: 31 10 4081111
Web page: http://www.eur.nl/ese

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Arino, Miguel A. & Franses, Philip Hans, 2000. "Forecasting the levels of vector autoregressive log-transformed time series," International Journal of Forecasting, Elsevier, vol. 16(1), pages 111-116.
  2. Fok, D. & Franses, Ph.H.B.F., 2000. "Forecasting Market Shares from Models for Sales," ERIM Report Series Research in Management ERS-2000-03-MKT, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
  3. Kumar, V., 1994. "Forecasting performance of market share models: an assessment, additional insights, and guidelines," International Journal of Forecasting, Elsevier, vol. 10(2), pages 295-312, September.
  4. Gary J. Russell, 1988. "Recovering Measures of Advertising Carryover from Aggregate Data: The Role of the Firm's Decision Behavior," Marketing Science, INFORMS, vol. 7(3), pages 252-270.
  5. Bijwaard, G.E. & Franses, Ph.H.B.F. & Paap, R., 2003. "Modeling purchases as repeated events," Econometric Institute Research Papers EI 2003-45, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
  6. Frank M. Bass, 1969. "A New Product Growth for Model Consumer Durables," Management Science, INFORMS, vol. 15(5), pages 215-227, January.
  7. Frank M. Bass & Robert P. Leone, 1983. "Temporal Aggregation, the Data Interval Bias, and Empirical Estimation of Bimonthly Relations from Annual Data," Management Science, INFORMS, vol. 29(1), pages 1-11, January.
  8. Donald W.K. Andrews & Werner Ploberger, 1992. "Optimal Tests When a Nuisance Parameter Is Present Only Under the Alternative," Cowles Foundation Discussion Papers 1015, Cowles Foundation for Research in Economics, Yale University.
  9. Robert P. Leone, 1995. "Generalizing What Is Known About Temporal Aggregation and Advertising Carryover," Marketing Science, INFORMS, vol. 14(3_supplem), pages G141-G150.
  10. Klapper, Daniel & Herwartz, Helmut, 2000. "Forecasting market share using predicted values of competitive behavior: further empirical results," International Journal of Forecasting, Elsevier, vol. 16(3), pages 399-421.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:ems:eureir:1631. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (RePub)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.