IDEAS home Printed from
   My bibliography  Save this paper

Value of Sample Separation Information in a Sequential Probit Model: Another Look at SSA's Disability Determination Process


  • Chuanming Gao

    (SUNY at Albany)

  • Kajal Lahiri

    (SUNY at Albany and Social Security Administration)

  • Bernard Wixon

    (Social Security Administration)


We have estimated a 4-step sequential probit model with and without sample separation information to characterize SSA's disability determination process. Under the program provisions, different criteria dictate the outcomes at different steps o f the process. We used data on health, activity limitations, demographic traits, and work from 1990 SIPP exact matched to SSA administrative records on disability determinations. Using GHK Monte Carlo simulation technique, our estimation results suggest that the correlations in errors across equations that may arise due to unobserved individual heterogeneity are not statistically significant. In addition, we examined the value of administrative data on the basis for allow/deny determinations at each sta ge of the process. Following the marginal likelihood approach adopted by Benitez-Silva, Buchinsky, Chan, Rust, and Sheidvasser (1999), we also estimated the above sequential probit model without the sample separation information for the purpose of direct comparison. We found that without the detailed administrative information on outcomes at each stage of the screening process, we could not properly evaluate the importance of a large number of program-relevant survey-based explanatory v ariables. In terms of both in-sample and jackknife-type out-of-sample predictive analysis, the value of modeling the sequential structure of the determination process in generating correct eligibility probabilities is confirmed.

Suggested Citation

  • Chuanming Gao & Kajal Lahiri & Bernard Wixon, 2000. "Value of Sample Separation Information in a Sequential Probit Model: Another Look at SSA's Disability Determination Process," Econometric Society World Congress 2000 Contributed Papers 0340, Econometric Society.
  • Handle: RePEc:ecm:wc2000:0340

    Download full text from publisher

    File URL:
    File Function: main text
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    1. Meng, Chun-Lo & Schmidt, Peter, 1985. "On the Cost of Partial Observability in the Bivariate Probit Model," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 26(1), pages 71-85, February.
    2. Keane, Michael P, 1994. "A Computationally Practical Simulation Estimator for Panel Data," Econometrica, Econometric Society, vol. 62(1), pages 95-116, January.
    3. Kiefer, Nicholas M, 1978. "Discrete Parameter Variation: Efficient Estimation of a Switching Regression Model," Econometrica, Econometric Society, vol. 46(2), pages 427-434, March.
    4. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    5. Benitez-Silva, Hugo & Buchinsky, Moshe & Chan, Hiu Man & Rust, John & Sheidvasser, Sofia, 1999. "An empirical analysis of the social security disability application, appeal, and award process," Labour Economics, Elsevier, vol. 6(2), pages 147-178, June.
    6. Cragg, John G, 1971. "Some Statistical Models for Limited Dependent Variables with Application to the Demand for Durable Goods," Econometrica, Econometric Society, vol. 39(5), pages 829-844, September.
    7. Hajivassiliou, Vassilis & McFadden, Daniel & Ruud, Paul, 1996. "Simulation of multivariate normal rectangle probabilities and their derivatives theoretical and computational results," Journal of Econometrics, Elsevier, vol. 72(1-2), pages 85-134.
    8. Schmidt, Peter, 1981. "Further Results on the Value of Sample Separation Information [Discrete Parameter Variation: Efficient Estimation of a Switching Regression Model]," Econometrica, Econometric Society, vol. 49(5), pages 1339-1343, September.
    9. Vassilis A. Hajivassiliou, 1991. "Simulation Estimation Methods for Limited Dependent Variable Models," Cowles Foundation Discussion Papers 1007, Cowles Foundation for Research in Economics, Yale University.
    10. Blundell, Richard & Ham, John & Meghir, Costas, 1987. "Unemployment and Female Labour Supply," Economic Journal, Royal Economic Society, vol. 97(388a), pages 44-64, Supplemen.
    11. Keane, Michael P, 1992. "A Note on Identification in the Multinomial Probit Model," Journal of Business & Economic Statistics, American Statistical Association, vol. 10(2), pages 193-200, April.
    12. Goldfelfd, Stephen M. & Quandt, Richard E., 1975. "Estimation in a disequilibrium model and the value of information," Journal of Econometrics, Elsevier, vol. 3(4), pages 325-348, November.
    13. Jones, Andrew M, 1989. "A Double-Hurdle Model of Cigarette Consumption," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 4(1), pages 23-39, Jan.-Mar..
    14. Poirier, Dale J., 1980. "Partial observability in bivariate probit models," Journal of Econometrics, Elsevier, vol. 12(2), pages 209-217, February.
    Full references (including those not matched with items on IDEAS)

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ecm:wc2000:0340. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christopher F. Baum) or (Christopher F. Baum). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.