IDEAS home Printed from https://ideas.repec.org/p/ecm/feam04/741.html
   My bibliography  Save this paper

Macroeconomic Forecasting with Independent Component Analysis

Author

Listed:
  • Ruey Yau

Abstract

This paper considers a factor model in which independent component analysis (ICA) is employed to construct common factors out of a large number of macroeconomic time series. The ICA has been regarded as a better method to separate unobserved sources that are statistically independent to each other. Two algorithms are employed to compute the independent factors. The first algorithm takes into account the kurtosis feature contained in the sample. The second algorithm accommodates the time dependence structure in the time series data. A straightforward forecasting model using the independent factors is then compared with the forecasting models using the principal components in Stock and Watson (2002). The results of this research can help us to gain more knowledge about the underlying economic sources and their impacts on the aggregate variables. The empirical findings suggest that the independent component method is a powerful method of macroeconomic data compression. Whether the ICA method is superior over the principal component method in forecasting the U.S. real output and inflation variables is however inconclusive

Suggested Citation

  • Ruey Yau, 2004. "Macroeconomic Forecasting with Independent Component Analysis," Econometric Society 2004 Far Eastern Meetings 741, Econometric Society.
  • Handle: RePEc:ecm:feam04:741
    as

    Download full text from publisher

    File URL: http://repec.org/esFEAM04/up.16628.1080763199.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Danny Quah & Thomas J. Sargent, 1993. "A Dynamic Index Model for Large Cross Sections," NBER Chapters,in: Business Cycles, Indicators and Forecasting, pages 285-310 National Bureau of Economic Research, Inc.
    2. Jushan Bai & Serena Ng, 2002. "Determining the Number of Factors in Approximate Factor Models," Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
    3. Chamberlain, Gary & Rothschild, Michael, 1983. "Arbitrage, Factor Structure, and Mean-Variance Analysis on Large Asset Markets," Econometrica, Econometric Society, vol. 51(5), pages 1281-1304, September.
    4. Singleton, Kenneth J, 1980. "A Latent Time Series Model of the Cyclical Behavior of Interest Rates," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 21(3), pages 559-575, October.
    5. Eric M. Leeper & Christopher A. Sims & Tao Zha, 1996. "What Does Monetary Policy Do?," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 27(2), pages 1-78.
    6. Geweke, John F & Singleton, Kenneth J, 1981. "Maximum Likelihood "Confirmatory" Factor Analysis of Economic Time Series," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 22(1), pages 37-54, February.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    forecast; independent components; principal components;

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • E60 - Macroeconomics and Monetary Economics - - Macroeconomic Policy, Macroeconomic Aspects of Public Finance, and General Outlook - - - General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ecm:feam04:741. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christopher F. Baum). General contact details of provider: http://edirc.repec.org/data/essssea.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.