IDEAS home Printed from https://ideas.repec.org/p/ecm/ausm04/317.html
   My bibliography  Save this paper

Robustness of a semiparametric estimator of a copula

Author

Listed:
  • Param Silvapulle
  • Gunky Kim
  • Mervyn J. Silvapulle

Abstract

Copulas offer a convenient way of modelling multivariate observations and capturing the intrinsic dependence between the components of a multivariate random variable. A semiparametric method for estimating the dependence parameters of copulas was proposed by Genest, Ghoudi and Rivest (1995), in which the marginal distributions are estimated nonparameterically by empirical distribution functions. Thus, this method does not require any marginal distribution to have a known parametric form. However, a standard concern about semiparametric methods is the possibility that it may be substantially less efficient than the parametric method when the model is completely parametric and correctly specified. In this paper we investigate the efficiency-robustness properties of the foregoing semiparametric method by simulation; in particular, we evaluate the performance of this method when the marginal distributions are specified correctly and when they are specified incorrectly. The results show that the semiparametric method is better than the parametric methods. An example involving the household expenditure data for Australia is used to compare and contrast the methods

Suggested Citation

  • Param Silvapulle & Gunky Kim & Mervyn J. Silvapulle, 2004. "Robustness of a semiparametric estimator of a copula," Econometric Society 2004 Australasian Meetings 317, Econometric Society.
  • Handle: RePEc:ecm:ausm04:317
    as

    Download full text from publisher

    File URL: http://repec.org/esAUSM04/up.31528.1078118429.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bouye, Eric & Durlleman, Valdo & Nikeghbali, Ashkan & Riboulet, Gaël & Roncalli, Thierry, 2000. "Copulas for finance," MPRA Paper 37359, University Library of Munich, Germany.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hohsuk Noh & Anouar El Ghouch & Ingrid Van Keilegom, 2015. "Semiparametric Conditional Quantile Estimation Through Copula-Based Multivariate Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(2), pages 167-178, April.
    2. Sarazin, Gabriel & Morio, Jérôme & Lagnoux, Agnès & Balesdent, Mathieu & Brevault, Loïc, 2021. "Reliability-oriented sensitivity analysis in presence of data-driven epistemic uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    3. Silvo Dajcman, 2013. "Dependence between Croatian and European stock markets – A copula GARCH approach," Zbornik radova Ekonomskog fakulteta u Rijeci/Proceedings of Rijeka Faculty of Economics, University of Rijeka, Faculty of Economics and Business, vol. 31(2), pages 209-232.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fabrizio Cipollini & Robert F. Engle & Giampiero M. Gallo, 2016. "Copula--based Specification of vector MEMs," Papers 1604.01338, arXiv.org.
    2. Cooper, Joseph & Delbecq, Benoît, 2014. "A multi-region approach to assessing fiscal and farm level consequences of government support for farm risk management," Bio-based and Applied Economics Journal, Italian Association of Agricultural and Applied Economics (AIEAA), vol. 3(3), pages 1-23, December.
    3. Marc Gronwald & Janina Ketterer & Stefan Trück, 2011. "The Dependence Structure between Carbon Emission Allowances and Financial Markets - A Copula Analysis," CESifo Working Paper Series 3418, CESifo.
    4. Fathi, Abid & Nader, Naifar, 2007. "Price Calibration of basket default swap: Evidence from Japanese market," MPRA Paper 6013, University Library of Munich, Germany.
    5. Harris, Richard D.F. & Mazibas, Murat, 2013. "Dynamic hedge fund portfolio construction: A semi-parametric approach," Journal of Banking & Finance, Elsevier, vol. 37(1), pages 139-149.
    6. Azam, Kazim & Pitt, Michael, 2014. "Bayesian Inference for a Semi-Parametric Copula-based Markov Chain," The Warwick Economics Research Paper Series (TWERPS) 1051, University of Warwick, Department of Economics.
    7. Fantazzini, Dean, 2010. "Three-stage semi-parametric estimation of T-copulas: Asymptotics, finite-sample properties and computational aspects," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2562-2579, November.
    8. Henryk Gurgul & Roland Mestel & Robert Syrek, 2008. "Polish Stock Market and some foreign markets - dependence analysis by copulas," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 18(2), pages 17-35.
    9. Giacomini, Enzo & Härdle, Wolfgang & Spokoiny, Vladimir, 2009. "Inhomogeneous Dependence Modeling with Time-Varying Copulae," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(2), pages 224-234.
    10. Fabrizio Cipollini & Robert F. Engle & Giampiero M. Gallo, 2006. "Vector Multiplicative Error Models: Representation and Inference," NBER Technical Working Papers 0331, National Bureau of Economic Research, Inc.
    11. Fantazzini, Dean, 2011. "Analysis of multidimensional probability distributions with copula functions," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 22(2), pages 98-134.
    12. Prokhorov, Artem & Schmidt, Peter, 2009. "Likelihood-based estimation in a panel setting: Robustness, redundancy and validity of copulas," Journal of Econometrics, Elsevier, vol. 153(1), pages 93-104, November.
    13. Kole, Erik & Koedijk, Kees & Verbeek, Marno, 2007. "Selecting copulas for risk management," Journal of Banking & Finance, Elsevier, vol. 31(8), pages 2405-2423, August.
    14. Long Kang, 2011. "Asset allocation in a Bayesian copula-GARCH framework: An application to the ‘passive funds versus active funds’ problem," Journal of Asset Management, Palgrave Macmillan, vol. 12(1), pages 45-66, April.
    15. Xisong Jin & Francisco Nadal De Simone, 2017. "Systemic Financial Sector and Sovereign Risks," BCL working papers 109, Central Bank of Luxembourg.
    16. Yuri Salazar & Wing Ng, 2015. "Nonparametric estimation of general multivariate tail dependence and applications to financial time series," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 24(1), pages 121-158, March.
    17. Avdulaj, Krenar & Barunik, Jozef, 2015. "Are benefits from oil–stocks diversification gone? New evidence from a dynamic copula and high frequency data," Energy Economics, Elsevier, vol. 51(C), pages 31-44.
    18. Cooper, Joseph & Hungerford, Ashley & O'Donoghue, Erik, 2015. "Interactions of Shallow Loss Support and Traditional Federal Crop Insurance: Building a Framework for Assessing Commodity Support Issues for the Next Farm Act," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 205310, Agricultural and Applied Economics Association.
    19. José Murteira & Óscar Lourenço, 2011. "Health care utilization and self-assessed health: specification of bivariate models using copulas," Empirical Economics, Springer, vol. 41(2), pages 447-472, October.
    20. Panchenko, Valentyn, 2005. "Goodness-of-fit test for copulas," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 355(1), pages 176-182.

    More about this item

    Keywords

    Copulas; multivariate joint distribution; inference function method; maximum likelihood mathod; semiparametric method;
    All these keywords.

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ecm:ausm04:317. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: https://edirc.repec.org/data/essssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.