IDEAS home Printed from
   My bibliography  Save this paper

The Spatial Analysis of Time Series


  • Park, Joon Y.

    (Rice University and Sungkyunkwan University)


In this paper, we propose a method of analyzing time series, called the spatial analysis. The analysis consists mainly of the statistical inference on the distribution given by the expected local time, which we define to be the spatial distribution, of a given time series. The spatial distribution is introduced primarily for the analysis of nonstationary time series whose distributions change over time. However, it is well defined for both stationary and nonstationary time series, and reduces to the time invariant stationary distribution if the underlying time series is indeed stationary. The spatial analysis may therefore be regarded as an extension of the usual inference on the distribution of a stationary time series to accommodate for nonstationary time series. In fact, we show that the concept of the spatial distribution allows us to extend many notions and ideas built upon the presumption of stationarity and make them applicable also for the analysis of nonstationary data. Our approach is nonparametric, and imposes very mild conditions on the underlying time series. In particular, we allow for the observations generated from a wide class of stochastic processes with stationary and mixing increments, or general markov processes including virtually all diffusion models used in practice. For illustration, we provide some empirical applications of our methodology to various topics such as the risk management, distributional dominance and option pricing.

Suggested Citation

  • Park, Joon Y., 2005. "The Spatial Analysis of Time Series," Working Papers 2005-07, Rice University, Department of Economics.
  • Handle: RePEc:ecl:riceco:2005-07

    Download full text from publisher

    File URL:
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    1. Oliver Linton & Esfandiar Maasoumi & Yoon-Jae Whang, 2002. "Consistent Testing for Stochastic Dominance: A Subsampling Approach," STICERD - Econometrics Paper Series 433, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    2. Bandi, Federico M., 2002. "Short-term interest rate dynamics: a spatial approach," Journal of Financial Economics, Elsevier, vol. 65(1), pages 73-110, July.
    3. Federico M. Bandi & Peter C. B. Phillips, 2003. "Fully Nonparametric Estimation of Scalar Diffusion Models," Econometrica, Econometric Society, vol. 71(1), pages 241-283, January.
    4. Peter P. Carr & Robert A. Jarrow, 2008. "The Stop-Loss Start-Gain Paradox and Option Valuation: A new Decomposition into Intrinsic and Time Value," World Scientific Book Chapters,in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 4, pages 61-84 World Scientific Publishing Co. Pte. Ltd..
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Wang, Qiying & Phillips, Peter C.B., 2009. "Asymptotic Theory For Local Time Density Estimation And Nonparametric Cointegrating Regression," Econometric Theory, Cambridge University Press, vol. 25(03), pages 710-738, June.

    More about this item

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ecl:riceco:2005-07. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.