IDEAS home Printed from https://ideas.repec.org/p/ecl/riceco/2004-02.html
   My bibliography  Save this paper

Nonstationary Nonlinear Heteroskedasticity in Regression

Author

Listed:
  • Park, Joon

    (Rice University and Sungkyunkwan University)

  • Chung, Heetaik

    (Handong University)

Abstract

This paper considers the regression with errors having nonstationary nonlinear heteroskedasticity. For both the usual stationary regression and the nonstationary cointegrating regression, we develop the asymptotic theories for theleast squares methods in the presence of conditional heterogeneity given as a nonlinear function of an integrated process. The conditional heteroskedasticity generated by an integrated process has more fundamental effects on the regression asymptotics than the one generated by a stationary process. In particular, the nonstationarity of volatility in the regression errors may induce spuriousness of the underlying regression. This is true for both the usual stationary regression and the nonstationary cointegrating regression, if excessive nonstationary volatility is present in the errors. Mild nonstationary volatilities do not render the underlying regression spurious. However, their presence makes the least squares estimator asymptotically biased and inefficient and the usual chi-square test invalid. We provide some illustrations to demonstrate the empirical relevancy of the model and theory developed in the paper. For this purpose, examined are US consumption function, EURO/USD forward-spot spreads and capital-asset pricing models for some major NYSE stocks.

Suggested Citation

  • Park, Joon & Chung, Heetaik, 2005. "Nonstationary Nonlinear Heteroskedasticity in Regression," Working Papers 2004-02, Rice University, Department of Economics.
  • Handle: RePEc:ecl:riceco:2004-02
    as

    Download full text from publisher

    File URL: http://www.ruf.rice.edu/~econ/papers/2004papers/02parkandchung.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Park, Joon Y, 1992. "Canonical Cointegrating Regressions," Econometrica, Econometric Society, vol. 60(1), pages 119-143, January.
    2. Park, Joon Y. & Phillips, Peter C.B., 1999. "Asymptotics For Nonlinear Transformations Of Integrated Time Series," Econometric Theory, Cambridge University Press, vol. 15(03), pages 269-298, June.
    3. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    4. Chang, Yoosoon & Park, Joon Y., 2003. "Index models with integrated time series," Journal of Econometrics, Elsevier, vol. 114(1), pages 73-106, May.
    5. Miller, J. Isaac & Park, Joon Y., 2010. "Nonlinearity, nonstationarity, and thick tails: How they interact to generate persistence in memory," Journal of Econometrics, Elsevier, vol. 155(1), pages 83-89, March.
    6. Park, Joon, 2003. "Strong Approximations for Nonlinear Transformations of Integrated Time Series," Working Papers 2003-18, Rice University, Department of Economics.
    7. Phillips, P.C.B., 1986. "Understanding spurious regressions in econometrics," Journal of Econometrics, Elsevier, vol. 33(3), pages 311-340, December.
    8. Granger, C. W. J. & Newbold, P., 1974. "Spurious regressions in econometrics," Journal of Econometrics, Elsevier, vol. 2(2), pages 111-120, July.
    9. Park, Joon Y & Phillips, Peter C B, 2001. "Nonlinear Regressions with Integrated Time Series," Econometrica, Econometric Society, vol. 69(1), pages 117-161, January.
    10. Park, Joon Y., 2002. "Nonstationary nonlinear heteroskedasticity," Journal of Econometrics, Elsevier, vol. 110(2), pages 383-415, October.
    11. Peter C.B. Phillips & Bruce E. Hansen, 1988. "Statistical Inference in Instrumental Variables," Cowles Foundation Discussion Papers 869R, Cowles Foundation for Research in Economics, Yale University, revised Apr 1989.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Boswijk, H. Peter & Cavaliere, Giuseppe & Rahbek, Anders & Taylor, A.M. Robert, 2016. "Inference on co-integration parameters in heteroskedastic vector autoregressions," Journal of Econometrics, Elsevier, vol. 192(1), pages 64-85.
    2. Kim, Chang Sik & Lee, Sungro, 2011. "Spurious regressions driven by excessive volatility," Economics Letters, Elsevier, vol. 113(3), pages 292-297.
    3. Xu, Ke-Li, 2008. "Testing against nonstationary volatility in time series," Economics Letters, Elsevier, vol. 101(3), pages 288-292, December.
    4. Han, Heejoon & Park, Joon Y., 2008. "Time series properties of ARCH processes with persistent covariates," Journal of Econometrics, Elsevier, vol. 146(2), pages 275-292, October.
    5. Ke-Li Xu & Jui-Chung Yang, 2015. "Towards Uniformly Efficient Trend Estimation Under Weak/Strong Correlation and Non-stationary Volatility," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(1), pages 63-86, March.
    6. Kim, Chang Sik & Kim, In-Moo, 2012. "Partial parametric estimation for nonstationary nonlinear regressions," Journal of Econometrics, Elsevier, vol. 167(2), pages 448-457.
    7. Xu, Ke-Li, 2012. "Robustifying multivariate trend tests to nonstationary volatility," Journal of Econometrics, Elsevier, vol. 169(2), pages 147-154.
    8. Nikolaos Kourogenis, 2015. "Polynomial Trends, Nonstationary Volatility and the Eicker-White Asymptotic Variance Estimator," Economics Bulletin, AccessEcon, vol. 35(3), pages 1675-1680.
    9. Choi, Yongok & Jacewitz, Stefan & Park, Joon Y., 2016. "A reexamination of stock return predictability," Journal of Econometrics, Elsevier, vol. 192(1), pages 168-189.
    10. Xu, Ke-Li & Phillips, Peter C.B., 2008. "Adaptive estimation of autoregressive models with time-varying variances," Journal of Econometrics, Elsevier, vol. 142(1), pages 265-280, January.

    More about this item

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ecl:riceco:2004-02. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (). General contact details of provider: http://edirc.repec.org/data/dericus.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.