IDEAS home Printed from https://ideas.repec.org/p/ecb/ecbwps/20101277.html
   My bibliography  Save this paper

Combining the forecasts in the ECB survey of professional forecasters: can anything beat the simple average?

Author

Listed:
  • Kenny, Geoff
  • Genre, Véronique
  • Meyler, Aidan
  • Timmermann, Allan

Abstract

In this paper, we explore the potential gains from alternative combinations of the surveyed forecasts in the ECB Survey of Professional Forecasters. Our analysis encompasses a variety of methods including statistical combinations based on principal components analysis and trimmed means, performance-based weighting, least squares estimates of optimal weights as well as Bayesian shrinkage. We provide a pseudo real-time out-of-sample performance evaluation of these alternative combinations and check the sensitivity of the results to possible data-snooping bias. The latter robustness check is also informed using a novel real time meta selection procedure which is not subject to the data-snooping critique. For GDP growth and the unemployment rate, only few of the forecast combination schemes are able to outperform the simple equal-weighted average forecast. Conversely, for the inflation rate there is stronger evidence that more refined combinations can lead to improvement over this benchmark. In particular, for this variable, the relative improvement appears significant even controlling for data snooping bias. JEL Classification: C22, C53

Suggested Citation

  • Kenny, Geoff & Genre, Véronique & Meyler, Aidan & Timmermann, Allan, 2010. "Combining the forecasts in the ECB survey of professional forecasters: can anything beat the simple average?," Working Paper Series 1277, European Central Bank.
  • Handle: RePEc:ecb:ecbwps:20101277
    Note: 339061
    as

    Download full text from publisher

    File URL: https://www.ecb.europa.eu//pub/pdf/scpwps/ecbwp1277.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Domenico Giannone & Jérôme Henry & Magdalena Lalik & Michele Modugno, 2012. "An Area-Wide Real-Time Database for the Euro Area," The Review of Economics and Statistics, MIT Press, vol. 94(4), pages 1000-1013, November.
    2. Giannone, Domenico & Lenza, Michele & Momferatou, Daphne & Onorante, Luca, 2014. "Short-term inflation projections: A Bayesian vector autoregressive approach," International Journal of Forecasting, Elsevier, vol. 30(3), pages 635-644.
    3. Diebold, Francis X. & Pauly, Peter, 1990. "The use of prior information in forecast combination," International Journal of Forecasting, Elsevier, vol. 6(4), pages 503-508, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Oinonen, Sami & Paloviita, Maritta, 2014. "Analysis of aggregated inflation expectations based on the ECB SPF survey," Research Discussion Papers 29/2014, Bank of Finland.
    2. Conflitti, Cristina & De Mol, Christine & Giannone, Domenico, 2015. "Optimal combination of survey forecasts," International Journal of Forecasting, Elsevier, vol. 31(4), pages 1096-1103.
    3. Driver, Ciaran & Trapani, Lorenzo & Urga, Giovanni, 2013. "On the use of cross-sectional measures of forecast uncertainty," International Journal of Forecasting, Elsevier, vol. 29(3), pages 367-377.
    4. El-Shagi, Makram & Giesen, Sebastian & Jung, Alexander, 2012. "Does Central Bank Staff Beat Private Forecasters?," IWH Discussion Papers 5/2012, Halle Institute for Economic Research (IWH).
    5. Öğünç, Fethi & Akdoğan, Kurmaş & Başer, Selen & Chadwick, Meltem Gülenay & Ertuğ, Dilara & Hülagü, Timur & Kösem, Sevim & Özmen, Mustafa Utku & Tekatlı, Necati, 2013. "Short-term inflation forecasting models for Turkey and a forecast combination analysis," Economic Modelling, Elsevier, vol. 33(C), pages 312-325.
    6. Gary Koop & Luca Onorante, 2011. "Estimating Phillips Curves in Turbulent Times using the ECBs Survey of Professional Forecasters," Working Papers 1109, University of Strathclyde Business School, Department of Economics.
    7. Luis E. Rojas, 2011. "Professional Forecasters: How to Understand and Exploit Them Through a DSGE Model," BORRADORES DE ECONOMIA 008945, BANCO DE LA REPÚBLICA.
    8. Schnatz, Bernd & D'Agostino, Antonello, 2012. "Survey-based nowcasting of US growth: a real-time forecast comparison over more than 40 years," Working Paper Series 1455, European Central Bank.
    9. Xiaojie Xu, 2020. "Corn Cash Price Forecasting," American Journal of Agricultural Economics, John Wiley & Sons, vol. 102(4), pages 1297-1320, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Genre, Véronique & Kenny, Geoff & Meyler, Aidan & Timmermann, Allan, 2013. "Combining expert forecasts: Can anything beat the simple average?," International Journal of Forecasting, Elsevier, vol. 29(1), pages 108-121.
    2. Marek Jarociński & Michele Lenza, 2018. "An Inflation‐Predicting Measure of the Output Gap in the Euro Area," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 50(6), pages 1189-1224, September.
    3. Chalmovianský, Jakub & Porqueddu, Mario & Sokol, Andrej, 2020. "Weigh(t)ing the basket: aggregate and component-based inflation forecasts for the euro area," Working Paper Series 2501, European Central Bank.
    4. Miranda-Agrippino, Silvia & Ricco, Giovanni, 2018. "Bayesian Vector Autoregressions," The Warwick Economics Research Paper Series (TWERPS) 1159, University of Warwick, Department of Economics.
    5. Marek Jarociński & Bartosz Maćkowiak, 2014. "Choosing variables in macroeconomic modelling," Research Bulletin, European Central Bank, vol. 20, pages 5-8.
    6. Giannone, Domenico & Lenza, Michele & Momferatou, Daphne & Onorante, Luca, 2014. "Short-term inflation projections: A Bayesian vector autoregressive approach," International Journal of Forecasting, Elsevier, vol. 30(3), pages 635-644.
    7. Antoine Mandel & Amir Sani, 2017. "A Machine Learning Approach to the Forecast Combination Puzzle," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-01317974, HAL.
    8. Chan, Joshua C.C. & Eisenstat, Eric & Koop, Gary, 2016. "Large Bayesian VARMAs," Journal of Econometrics, Elsevier, vol. 192(2), pages 374-390.
    9. Conti, Antonio M., 2017. "Has the FED Fallen behind the Curve? Evidence from VAR models," Economics Letters, Elsevier, vol. 159(C), pages 164-168.
    10. Graham Elliott & Allan Timmermann, 2016. "Economic Forecasting," Economics Books, Princeton University Press, edition 1, number 10740.
    11. Jing Zeng, 2015. "Combining Country-Specific Forecasts when Forecasting Euro Area Macroeconomic Aggregates," Working Paper Series of the Department of Economics, University of Konstanz 2015-11, Department of Economics, University of Konstanz.
    12. Drechsel, Katja & Scheufele, Rolf, 2010. "Should We Trust in Leading Indicators? Evidence from the Recent Recession," IWH Discussion Papers 10/2010, Halle Institute for Economic Research (IWH).
    13. Mandalinci, Zeyyad, 2017. "Forecasting inflation in emerging markets: An evaluation of alternative models," International Journal of Forecasting, Elsevier, vol. 33(4), pages 1082-1104.
    14. Pär Österholm, 2009. "Incorporating Judgement in Fan Charts," Scandinavian Journal of Economics, Wiley Blackwell, vol. 111(2), pages 387-415, June.
    15. Huiyu Huang & Tae-Hwy Lee, 2010. "To Combine Forecasts or to Combine Information?," Econometric Reviews, Taylor & Francis Journals, vol. 29(5-6), pages 534-570.
    16. Domenico Giannone & Michele Lenza & Giorgio E. Primiceri, 2015. "Prior Selection for Vector Autoregressions," The Review of Economics and Statistics, MIT Press, vol. 97(2), pages 436-451, May.
    17. Ralf Brüggemann & Christian Kascha, 2017. "Directed Graphs and Variable Selection in Large Vector Autoregressive Models," Working Paper Series of the Department of Economics, University of Konstanz 2017-06, Department of Economics, University of Konstanz.
    18. Ciccarelli, Matteo & Osbat, Chiara, 2017. "Low inflation in the euro area: Causes and consequences," Occasional Paper Series 181, European Central Bank.
    19. Tumala, Mohammed M & Olubusoye, Olusanya E & Yaaba, Baba N & Yaya, OlaOluwa S & Akanbi, Olawale B, 2017. "Forecasting Nigerian Inflation using Model Averaging methods: Modelling Frameworks to Central Banks," MPRA Paper 88754, University Library of Munich, Germany, revised Feb 2018.
    20. Guido Bulligan & Eliana Viviano, 2017. "Has the wage Phillips curve changed in the euro area?," IZA Journal of Labor Policy, Springer;Forschungsinstitut zur Zukunft der Arbeit GmbH (IZA), vol. 6(1), pages 1-22, December.

    More about this item

    Keywords

    data snooping; forecast combination; forecast evaluation; real-time data; Survey of Professional Forecasters;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ecb:ecbwps:20101277. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Official Publications). General contact details of provider: https://edirc.repec.org/data/emieude.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.