IDEAS home Printed from
   My bibliography  Save this paper

Do Composite Procedures Really Improve the Accuracy of Outlook Forecasts?


  • Colino, Evelyn V.
  • Irwin, Scott H.
  • Garcia, Philip


This paper investigates whether the accuracy of outlook hog price forecasts can be improved using composite forecasts in an out-of-sample context. Price forecasts from four wellrecognized outlook programs are combined with futures-based forecasts, ARIMA, and unrestricted Vector Autoregressive (VAR) models. Quarterly data are available from 1975.I through 2007.IV, which allow for a relatively long out-of-sample evaluation period after permitting model specification and appropriate composite-weight training periods. Results show that futures and numerous composite procedures outperform outlook forecasts. At intermediate horizons, OLS composite procedures perform rather well. The superiority of futures and composite forecasts decreases at longer horizons except for an equal-weighted approach. Importantly, with just few exceptions, nothing outperforms the equal-weight approach significantly in any program or horizon. Overall, findings favor the usage of equal-weighted composites, a result that is consistent with previous empirical findings and recent theoretical papers.

Suggested Citation

  • Colino, Evelyn V. & Irwin, Scott H. & Garcia, Philip, 2009. "Do Composite Procedures Really Improve the Accuracy of Outlook Forecasts?," 2009 Conference, April 20-21, 2009, St. Louis, Missouri 53052, NCCC-134 Conference on Applied Commodity Price Analysis, Forecasting, and Market Risk Management.
  • Handle: RePEc:ags:nccc09:53052

    Download full text from publisher

    File URL:
    Download Restriction: no

    References listed on IDEAS

    1. Todd E. Clark & Michael W. McCracken, 2010. "Averaging forecasts from VARs with uncertain instabilities," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 5-29.
    2. Granger, C. W. J. & Newbold, Paul, 1986. "Forecasting Economic Time Series," Elsevier Monographs, Elsevier, edition 2, number 9780122951831 edited by Shell, Karl.
    3. Issler, João Victor & Lima, Luiz Renato, 2009. "A panel data approach to economic forecasting: The bias-corrected average forecast," Journal of Econometrics, Elsevier, vol. 152(2), pages 153-164, October.
    4. Evelyn V. Colino & Scott H. Irwin, 2010. "Outlook vs. Futures: Three Decades of Evidence in Hog and Cattle Markets," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 92(1), pages 1-15.
    5. Diebold, Francis X. & Pauly, Peter, 1990. "The use of prior information in forecast combination," International Journal of Forecasting, Elsevier, vol. 6(4), pages 503-508, December.
    6. McIntosh, Christopher S. & Bessler, David A., 1988. "Forecasting Agricultural Prices Using A Bayesian Composite Approach," Southern Journal of Agricultural Economics, Southern Agricultural Economics Association, vol. 20(02), December.
    7. Harvey, David & Leybourne, Stephen & Newbold, Paul, 1997. "Testing the equality of prediction mean squared errors," International Journal of Forecasting, Elsevier, vol. 13(2), pages 281-291, June.
    8. Timmermann, Allan, 2006. "Forecast Combinations," Handbook of Economic Forecasting, Elsevier.
    9. Ashley, Richard, 2003. "Statistically significant forecasting improvements: how much out-of-sample data is likely necessary?," International Journal of Forecasting, Elsevier, vol. 19(2), pages 229-239.
    10. Clemen, Robert T., 1989. "Combining forecasts: A review and annotated bibliography," International Journal of Forecasting, Elsevier, vol. 5(4), pages 559-583.
    11. Fang, Yue, 2003. "Forecasting combination and encompassing tests," International Journal of Forecasting, Elsevier, vol. 19(1), pages 87-94.
    12. Allen, P. Geoffrey, 1994. "Economic forecasting in agriculture," International Journal of Forecasting, Elsevier, vol. 10(1), pages 81-135, June.
    Full references (including those not matched with items on IDEAS)


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:nccc09:53052. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (AgEcon Search). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.