IDEAS home Printed from https://ideas.repec.org/p/ebg/essewp/dr-09004.html
   My bibliography  Save this paper

A Spatial and Temporal Autoregressive Local Estimation for the Paris Housing Market

Author

Listed:

Abstract

This original study examines the potential of a spatiotemporal autoregressive Local (LSTAR) approach in modelling transaction prices for the housing market in inner Paris. We use a data set from the Paris Region notary office (“Chambre des notaires d’Île-de-France”) which consists of approximately 250,000 transactions units between the first quarter of 1990 and the end of 2005. We use the exact X -- Y coordinates and transaction date to spatially and temporally sort each transaction. We first choose to use the spatiotemporal autoregressive (STAR) approach proposed by Pace, Barry, Clapp and Rodriguez (1998). This method incorporates a spatiotemporal filtering process into the conventional hedonic function and attempts to correct for spatial and temporal correlative effects. We find significant estimates of spatial dependence effects. Moreover, using an original methodology, we find evidence of a strong presence of both spatial and temporal heterogeneity in the model. It suggests that spatial and temporal drifts in households socio-economic profiles and local housing market structure effects are certainly major determinants of the price level for the Paris Housing Market.

Suggested Citation

  • Nappi-Choulet, Ingrid & Maury, Tristan-Pierre, 2009. "A Spatial and Temporal Autoregressive Local Estimation for the Paris Housing Market," ESSEC Working Papers DR 09004, ESSEC Research Center, ESSEC Business School.
  • Handle: RePEc:ebg:essewp:dr-09004
    as

    Download full text from publisher

    File URL: http://www.essec.fr/faculty/showDeclFileRes.do?declId=8545&key=__workpaper__
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Ingrid Nappi-Choulet Pr. & Tristan-Pierre Maury, 2009. "A Spatiotemporal Autoregressive Price Index for the Paris Office Property Market," Real Estate Economics, American Real Estate and Urban Economics Association, vol. 37(2), pages 305-340.
    2. Clapp, John M & Rodriguez, Mauricio, 1999. "Erratum: Spatiotemporal Autoregressive Models of Neighborhood Effects," The Journal of Real Estate Finance and Economics, Springer, vol. 19(1), pages 1-85, July.
    3. Kelejian, Harry H. & Prucha, Ingmar R., 2007. "HAC estimation in a spatial framework," Journal of Econometrics, Elsevier, vol. 140(1), pages 131-154, September.
    4. Bourassa, Steven C. & Hamelink, Foort & Hoesli, Martin & MacGregor, Bryan D., 1999. "Defining Housing Submarkets," Journal of Housing Economics, Elsevier, vol. 8(2), pages 160-183, June.
    5. A S Fotheringham & M E Charlton & C Brunsdon, 1998. "Geographically Weighted Regression: A Natural Evolution of the Expansion Method for Spatial Data Analysis," Environment and Planning A, , vol. 30(11), pages 1905-1927, November.
    6. Alan E. Gelfand & Mark D. Ecker & John R. Knight & C. F. Sirmans, 2004. "The Dynamics of Location in Home Price," The Journal of Real Estate Finance and Economics, Springer, vol. 29(2), pages 149-166, September.
    7. Kelley Pace, R. & Barry, Ronald, 1997. "Sparse spatial autoregressions," Statistics & Probability Letters, Elsevier, vol. 33(3), pages 291-297, May.
    8. R. Kelley Pace & Otis W. Gilley, 1998. "Generalizing the OLS and Grid Estimators," Real Estate Economics, American Real Estate and Urban Economics Association, vol. 26(2), pages 331-347.
    9. Bourassa, Steven C. & Hoesli, Martin & Peng, Vincent S., 2003. "Do housing submarkets really matter?," Journal of Housing Economics, Elsevier, vol. 12(1), pages 12-28, March.
    10. Basu, Sabyasachi & Thibodeau, Thomas G, 1998. "Analysis of Spatial Autocorrelation in House Prices," The Journal of Real Estate Finance and Economics, Springer, vol. 17(1), pages 61-85, July.
    11. Can, Ayse & Megbolugbe, Isaac, 1997. "Spatial Dependence and House Price Index Construction," The Journal of Real Estate Finance and Economics, Springer, vol. 14(1-2), pages 203-222, Jan.-Marc.
    12. Pace, R Kelley & Barry, Ronald & Clapp, John M. & Rodriquez, Mauricio, 1998. "Spatiotemporal Autoregressive Models of Neighborhood Effects," The Journal of Real Estate Finance and Economics, Springer, vol. 17(1), pages 15-33, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Benchimol, Jonathan & Fourçans, André, 2012. "Money and risk in a DSGE framework: A Bayesian application to the Eurozone," Journal of Macroeconomics, Elsevier, vol. 34(1), pages 95-111.
    2. Mark J. Holmes & Jesús Otero & Theodore Panagiotidis, 2017. "A Pair-wise Analysis of Intra-city Price Convergence Within the Paris Housing Market," The Journal of Real Estate Finance and Economics, Springer, vol. 54(1), pages 1-16, January.
    3. Thanos, Sotirios & Dubé, Jean & Legros, Diègo, 2016. "Putting time into space: the temporal coherence of spatial applications in the housing market," Regional Science and Urban Economics, Elsevier, vol. 58(C), pages 78-88.
    4. Richard T. Baillie & Kun Ho Kim, 2015. "Local Deviations from Uncovered Interest Parity: The Role of Macroeconomic Fundamentals," Working Paper series 15-43, Rimini Centre for Economic Analysis.
    5. Sotirios Thanos & Abigail L. Bristow & Mark R. Wardman, 2015. "Residential Sorting And Environmental Externalities: The Case Of Nonlinearities And Stigma In Aviation Noise Values," Journal of Regional Science, Wiley Blackwell, vol. 55(3), pages 468-490, June.
    6. Jean Dubé & Diègo Legros, 2013. "Dealing with spatial data pooled over time in statistical models," Letters in Spatial and Resource Sciences, Springer, vol. 6(1), pages 1-18, March.
    7. Aaron Swoboda & Tsegaye Nega & Maxwell Timm, 2015. "Hedonic Analysis Over Time And Space: The Case Of House Prices And Traffic Noise," Journal of Regional Science, Wiley Blackwell, vol. 55(4), pages 644-670, September.

    More about this item

    Keywords

    Hedonic Prices; Heterogeneity; Paris Housing Market; STAR Model;

    JEL classification:

    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • R33 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Real Estate Markets, Spatial Production Analysis, and Firm Location - - - Nonagricultural and Nonresidential Real Estate Markets

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ebg:essewp:dr-09004. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sophie Magnanou). General contact details of provider: http://edirc.repec.org/data/essecfr.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.