IDEAS home Printed from https://ideas.repec.org/p/drm/wpaper/2021-25.html
   My bibliography  Save this paper

Scaling up SME's credit scoring scope with LightGBM

Author

Listed:
  • Bastien Lextrait

Abstract

Small and Medium Size Enterprises (SMEs) are critical actors in the fabric of the economy. Their growth is often limited by the difficulty in obtaining fi nancing. Basel II accords enforced the obligation for banks to estimate the probability of default of their obligors. Currently used models are limited by the simplicity of their architecture and the available data. State of the art machine learning models are not widely used because they are often considered as black boxes that cannot be easily explained or interpreted. We propose a methodology to combine high predictive power and powerful explainability using various Gradient Boosting Decision Trees (GBDT) implementations such as the LightGBM algorithm and SHapley Additive exPlanation (SHAP) values as post-prediction explanation model. SHAP values are among the most recent methods quantifying with consistency the impact of each input feature over the credit score. This model is developed and tested using a nation-wide sample of French companies, with a highly unbalanced positive event ratio. The performances of GBDT models are compared with traditional credit scoring algorithms such as Support Vector Machine (SVM) and Logistic Regression. LightGBM provides the best performances over the test sample, while being fast to train and economically sound. Results obtained from SHAP values analysis are consistent with previous socio-economic studies, in that they can pinpoint known influent economical factors among hundreds of other features. Providing such a level of explainability to complex models may convince regulators to accept their use in automated credit scoring, which could ultimately benefi t both borrowers and lenders.

Suggested Citation

  • Bastien Lextrait, 2021. "Scaling up SME's credit scoring scope with LightGBM," EconomiX Working Papers 2021-25, University of Paris Nanterre, EconomiX.
  • Handle: RePEc:drm:wpaper:2021-25
    as

    Download full text from publisher

    File URL: https://economix.fr/pdf/dt/2021/WP_EcoX_2021-25.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Vân Anh Huynh-Thu & Alexandre Irrthum & Louis Wehenkel & Pierre Geurts, 2010. "Inferring Regulatory Networks from Expression Data Using Tree-Based Methods," PLOS ONE, Public Library of Science, vol. 5(9), pages 1-10, September.
    2. Allen N. Berger & Gregory F. Udell, 2002. "Small Business Credit Availability and Relationship Lending: The Importance of Bank Organisational Structure," Economic Journal, Royal Economic Society, vol. 112(477), pages 32-53, February.
    3. Edmister, Robert O., 1972. "An Empirical Test of Financial Ratio Analysis for Small Business Failure Prediction," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 7(2), pages 1477-1493, March.
    4. Stefania Albanesi & Domonkos F. Vamossy, 2019. "Predicting Consumer Default: A Deep Learning Approach," NBER Working Papers 26165, National Bureau of Economic Research, Inc.
    5. Beck, Thorsten & Demirguc-Kunt, Asli & Soledad Martinez Peria, Maria, 2008. "Bank Financing for SMEs around the World: Drivers, Obstacles, Business Models, and Lending Practices," Policy Research Working Paper Series 4785, The World Bank.
    6. Fernandes, Guilherme Barreto & Artes, Rinaldo, 2016. "Spatial dependence in credit risk and its improvement in credit scoring," European Journal of Operational Research, Elsevier, vol. 249(2), pages 517-524.
    7. Jane S. Pollard, 2003. "Small firm finance and economic geography," Journal of Economic Geography, Oxford University Press, vol. 3(4), pages 429-452, October.
    8. Sumit Agarwal, 2010. "Distance and Private Information in Lending," The Review of Financial Studies, Society for Financial Studies, vol. 23(7), pages 2757-2788, July.
    9. Lang Zhang & Haiqing Hu & Dan Zhang, 2015. "A credit risk assessment model based on SVM for small and medium enterprises in supply chain finance," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 1(1), pages 1-21, December.
    10. Altman, Edward I. & Haldeman, Robert G. & Narayanan, P., 1977. "ZETATM analysis A new model to identify bankruptcy risk of corporations," Journal of Banking & Finance, Elsevier, vol. 1(1), pages 29-54, June.
    11. Douglas J. Cumming & Lars Hornuf, 2020. "Marketplace Lending of SMEs," CESifo Working Paper Series 8100, CESifo.
    12. J. Eric Fredland & Clair E. Morris, 1976. "A Cross Section Analysis of Small Business Failure," Entrepreneurship Theory and Practice, , vol. 1(1), pages 7-18, July.
    13. Glennon, Dennis & Nigro, Peter, 2005. "Measuring the Default Risk of Small Business Loans: A Survival Analysis Approach," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 37(5), pages 923-947, October.
    14. Platt, Harlan D. & Platt, Marjorie B., 1991. "A note on the use of industry-relative ratios in bankruptcy prediction," Journal of Banking & Finance, Elsevier, vol. 15(6), pages 1183-1194, December.
    15. Verbraken, Thomas & Bravo, Cristián & Weber, Richard & Baesens, Bart, 2014. "Development and application of consumer credit scoring models using profit-based classification measures," European Journal of Operational Research, Elsevier, vol. 238(2), pages 505-513.
    16. Clive S. Lennox, 1999. "Audit Quality and Auditor Size: An Evaluation of Reputation and Deep Pockets Hypotheses," Journal of Business Finance & Accounting, Wiley Blackwell, vol. 26(7&8), pages 779-805.
    17. Kim, Hong Sik & Sohn, So Young, 2010. "Support vector machines for default prediction of SMEs based on technology credit," European Journal of Operational Research, Elsevier, vol. 201(3), pages 838-846, March.
    18. Edward I. Altman, 1968. "Financial Ratios, Discriminant Analysis And The Prediction Of Corporate Bankruptcy," Journal of Finance, American Finance Association, vol. 23(4), pages 589-609, September.
    19. Micha, Bernard, 1984. "Analysis of business failures in France," Journal of Banking & Finance, Elsevier, vol. 8(2), pages 281-291, June.
    20. Eisenbeis, Robert A, 1977. "Pitfalls in the Application of Discriminant Analysis in Business, Finance, and Economics," Journal of Finance, American Finance Association, vol. 32(3), pages 875-900, June.
    21. Beck, Thorsten & Demirguc-Kunt, Asli, 2006. "Small and medium-size enterprises: Access to finance as a growth constraint," Journal of Banking & Finance, Elsevier, vol. 30(11), pages 2931-2943, November.
    22. Elena Ivona DUMITRESCU & Sullivan HUE & Christophe HURLIN & Sessi TOKPAVI, 2020. "Machine Learning or Econometrics for Credit Scoring: Let’s Get the Best of Both Worlds," LEO Working Papers / DR LEO 2839, Orleans Economics Laboratory / Laboratoire d'Economie d'Orleans (LEO), University of Orleans.
    23. Gentry, Ja & Newbold, P & Whitford, Dt, 1985. "Classifying Bankrupt Firms With Funds Flow Components," Journal of Accounting Research, Wiley Blackwell, vol. 23(1), pages 146-160.
    24. Mossman, Charles E, et al, 1998. "An Empirical Comparison of Bankruptcy Models," The Financial Review, Eastern Finance Association, vol. 33(2), pages 35-53, May.
    25. Stiglitz, Joseph E & Weiss, Andrew, 1981. "Credit Rationing in Markets with Imperfect Information," American Economic Review, American Economic Association, vol. 71(3), pages 393-410, June.
    26. Clive S. Lennox, 1999. "Audit Quality and Auditor Size: An Evaluation of Reputation and Deep Pockets Hypotheses," Journal of Business Finance & Accounting, Wiley Blackwell, vol. 26(7‐8), pages 779-805, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Balcaen, Sofie & Ooghe, Hubert, 2006. "35 years of studies on business failure: an overview of the classic statistical methodologies and their related problems," The British Accounting Review, Elsevier, vol. 38(1), pages 63-93.
    2. Lin, Hsiou-Wei William & Lo, Huai-Chun & Wu, Ruei-Shian, 2016. "Modeling default prediction with earnings management," Pacific-Basin Finance Journal, Elsevier, vol. 40(PB), pages 306-322.
    3. Fayçal Mraihi & Inane Kanzari & Mohamed Tahar Rajhi, 2015. "Development of a Prediction Model of Failure in Tunisian Companies: Comparison between Logistic Regression and Support Vector Machines," International Journal of Empirical Finance, Research Academy of Social Sciences, vol. 4(3), pages 184-205.
    4. Laitinen, Erkki K., 2007. "Classification accuracy and correlation: LDA in failure prediction," European Journal of Operational Research, Elsevier, vol. 183(1), pages 210-225, November.
    5. Florin Mihai Magda & Adina Elena Danuletiu, 2015. "Econometric Model Used In Decision-Making Process Of Company Financing," Romanian Economic Business Review, Romanian-American University, vol. 10(3), pages 57-82, September.
    6. fernández, María t. Tascón & gutiérrez, Francisco J. Castaño, 2012. "Variables y Modelos Para La Identificación y Predicción Del Fracaso Empresarial: Revisión de La Investigación Empírica Reciente," Revista de Contabilidad - Spanish Accounting Review, Elsevier, vol. 15(1), pages 7-58.
    7. Dimitras, A. I. & Zanakis, S. H. & Zopounidis, C., 1996. "A survey of business failures with an emphasis on prediction methods and industrial applications," European Journal of Operational Research, Elsevier, vol. 90(3), pages 487-513, May.
    8. Antonio David Somoza Lopez & Josep Vallverdu Calafell, 2003. "Una comparacion de la seleccion de los ratios contables en los modelos contable-financieros de prediccion de la insolvencia empresarial," Working Papers in Economics 94, Universitat de Barcelona. Espai de Recerca en Economia.
    9. Ana Paula Matias Gama & Helena Susana Amaral Geraldes, 2012. "Credit risk assessment and the impact of the New Basel Capital Accord on small and medium‐sized enterprises," Management Research Review, Emerald Group Publishing Limited, vol. 35(8), pages 727-749, July.
    10. Jayasekera, Ranadeva, 2018. "Prediction of company failure: Past, present and promising directions for the future," International Review of Financial Analysis, Elsevier, vol. 55(C), pages 196-208.
    11. Fayçal Mraihi, 2016. "Distressed Company Prediction Using Logistic Regression: Tunisian’s Case," Quarterly Journal of Business Studies, Research Academy of Social Sciences, vol. 2(1), pages 34-54.
    12. Ha-Thu Nguyen, 2015. "How is credit scoring used to predict default in China?," EconomiX Working Papers 2015-1, University of Paris Nanterre, EconomiX.
    13. Lee, Neil & Brown, Ross, 2016. "Innovation, SMEs and the liability of distance: the demand and supply of bank funding in peripheral UK regions," LSE Research Online Documents on Economics 66215, London School of Economics and Political Science, LSE Library.
    14. Ha-Thu Nguyen, 2014. "Default Predictors in Credit Scoring - Evidence from France’s Retail Banking Institution," EconomiX Working Papers 2014-26, University of Paris Nanterre, EconomiX.
    15. Grice, John Stephen & Ingram, Robert W., 2001. "Tests of the generalizability of Altman's bankruptcy prediction model," Journal of Business Research, Elsevier, vol. 54(1), pages 53-61, October.
    16. Raffaella Calabrese & Galina Andreeva & Jake Ansell, 2019. "“Birds of a Feather” Fail Together: Exploring the Nature of Dependency in SME Defaults," Risk Analysis, John Wiley & Sons, vol. 39(1), pages 71-84, January.
    17. Philosophov, Leonid V. & Philosophov, Vladimir L., 2002. "Corporate bankruptcy prognosis: An attempt at a combined prediction of the bankruptcy event and time interval of its occurrence," International Review of Financial Analysis, Elsevier, vol. 11(3), pages 375-406.
    18. Yehning Chen & Rachel Huang & John Tsai & Larry Tzeng, 2015. "Soft Information and Small Business Lending," Journal of Financial Services Research, Springer;Western Finance Association, vol. 47(1), pages 115-133, February.
    19. Rassoul Yazdipour & Richard Constand, 2010. "Predicting Firm Failure: A Behavioral Finance Perspective," Journal of Entrepreneurial Finance, Pepperdine University, Graziadio School of Business and Management, vol. 14(3), pages 90-104, Fall.
    20. Zhichao Luo & Pingyu Hsu & Ni Xu, 2020. "SME Default Prediction Framework with the Effective Use of External Public Credit Data," Sustainability, MDPI, vol. 12(18), pages 1-18, September.

    More about this item

    Keywords

    Credit scoring; SMEs; Machine Learning; Gradient Boosting; Interpretability;
    All these keywords.

    JEL classification:

    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • M21 - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics - - Business Economics - - - Business Economics

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:drm:wpaper:2021-25. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Valerie Mignon (email available below). General contact details of provider: https://edirc.repec.org/data/modemfr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.