IDEAS home Printed from
   My bibliography  Save this paper

Leçons macroéconomiques de la Covid-19: une analyse pour la RDC


  • Umba, Gilles Bertrand
  • Siasi, Yves
  • Lumbala, Grégoire


Le présent travail se propose d’étudier l’impact macroéconomique de la COVID-19 sur l’activité économique en RD Congo. Pour ce faire, un modèle d’équilibre général dynamique et stochastique en économie ouverte est utilisé et les paramètres du modèles sont estimés en recourant à l’approche bayésienne. Les données estimées couvrent la période allant du premier trimestre 2012 au deuxième trimestre 2020. Les tests de diagnostics, notamment le test de convergence des chaines de Monte-Carlo Markov (MCMC) amènent à considérer que les paramètres sont fiables. Les résultats indiquent que: (i) le choc COVID-19 entrainerait une baisse sensible de l’output gap (y_t) jusqu’au 8ème trimestre après la survenance du choc; (ii) le niveau de consommation (c_t) subit également un effet baissier à la suite de la crise sanitaire jusqu’à plus de 10 trimestres après le choc; (iii) Le taux de change nominal (e_t) se déprécie également avec un effet de plus en plus atténué à partir du 6ème trimestre après le choc, et (iv) le terme de change subit également un effet négatif mais avec un intervalle de confiance plus important, ce qui pourrait éventuellement traduire un effet peut significatif suite à l’arrêt des échanges résultant des mesures de confinement.

Suggested Citation

  • Umba, Gilles Bertrand & Siasi, Yves & Lumbala, Grégoire, 2020. "Leçons macroéconomiques de la Covid-19: une analyse pour la RDC," Dynare Working Papers 64, CEPREMAP.
  • Handle: RePEc:cpm:dynare:064

    Download full text from publisher

    File URL:
    File Function: Main text
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    1. Sungbae An & Frank Schorfheide, 2007. "Bayesian Analysis of DSGE Models—Rejoinder," Econometric Reviews, Taylor & Francis Journals, vol. 26(2-4), pages 211-219.
    2. Martin S Eichenbaum & Sergio Rebelo & Mathias Trabandt, 2021. "The Macroeconomics of Epidemics [Economic activity and the spread of viral diseases: Evidence from high frequency data]," Review of Financial Studies, Society for Financial Studies, vol. 34(11), pages 5149-5187.
    3. Scott R. Baker & Nicholas Bloom & Steven J. Davis & Stephen J. Terry, 2020. "COVID-Induced Economic Uncertainty," NBER Working Papers 26983, National Bureau of Economic Research, Inc.
    4. Lawrence J. Christiano & Michele Boldrin & Jonas D. M. Fisher, 2001. "Habit Persistence, Asset Returns, and the Business Cycle," American Economic Review, American Economic Association, vol. 91(1), pages 149-166, March.
    5. Sungbae An & Frank Schorfheide, 2007. "Bayesian Analysis of DSGE Models," Econometric Reviews, Taylor & Francis Journals, vol. 26(2-4), pages 113-172.
    6. Pedro Brinca & Joao B. Duarte & Miguel Faria-e-Castro, 2020. "Is the COVID-19 Pandemic a Supply or a Demand Shock?," Economic Synopses, Federal Reserve Bank of St. Louis, issue 31, May.
    7. Alejandro Justiniano & Bruce Preston, 2010. "Monetary policy and uncertainty in an empirical small open‐economy model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 93-128, January.
    8. Calvo, Guillermo A., 1983. "Staggered prices in a utility-maximizing framework," Journal of Monetary Economics, Elsevier, vol. 12(3), pages 383-398, September.
    9. Warwick McKibbin & Roshen Fernando, 2021. "The Global Macroeconomic Impacts of COVID-19: Seven Scenarios," Asian Economic Papers, MIT Press, vol. 20(2), pages 1-30, Summer.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Donald Kemajou Njatang, 2021. "Impact économique de la COVID‐19 au Cameroun: Les résultats du modèle SIR‐macro," African Development Review, African Development Bank, vol. 33(S1), pages 126-138, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Del Negro, Marco & Schorfheide, Frank, 2008. "Forming priors for DSGE models (and how it affects the assessment of nominal rigidities)," Journal of Monetary Economics, Elsevier, vol. 55(7), pages 1191-1208, October.
    2. Guangling (Dave) Liu, 2013. "Will the Sarb always Succeed in Fighting Inflation with Contractionary Policy?," South African Journal of Economics, Economic Society of South Africa, vol. 81(3), pages 330-345, September.
    3. McKnight, Stephen & Mihailov, Alexander & Pompa Rangel, Antonio, 2020. "What do Latin American inflation targeters care about? A comparative Bayesian estimation of central bank preferences," Journal of Macroeconomics, Elsevier, vol. 63(C).
    4. Kamber, Gunes & McDonald, Chris & Sander, Nick & Theodoridis, Konstantinos, 2016. "Modelling the business cycle of a small open economy: The Reserve Bank of New Zealand's DSGE model," Economic Modelling, Elsevier, vol. 59(C), pages 546-569.
    5. Shah, Sayar Ahmad & Garg, Bhavesh, 2023. "Testing policy effectiveness during COVID-19: An NK-DSGE analysis," Journal of Asian Economics, Elsevier, vol. 84(C).
    6. Francis Leni Anguyo & Rangan Gupta & Kevin Kotzé, 2020. "Monetary policy and financial frictions in a small open-economy model for Uganda," Empirical Economics, Springer, vol. 59(3), pages 1213-1241, September.
    7. Alpanda, Sami & Aysun, Uluc, 2014. "International transmission of financial shocks in an estimated DSGE model," Journal of International Money and Finance, Elsevier, vol. 47(C), pages 21-55.
    8. Boris Blagov, 2018. "Financial crises and time-varying risk premia in a small open economy: a Markov-switching DSGE model for Estonia," Empirical Economics, Springer, vol. 54(3), pages 1017-1060, May.
    9. Dr. Barbara Rudolf & Mathias Zurlinden, 2014. "A compact open economy DSGE model for Switzerland," Economic Studies 2014-08, Swiss National Bank.
    10. N. Johnson, Leroy, 2022. "Financial Frictions And Monetary Policy Shocks In Sierra Leone: Dynamic Stochastic General Equilibrium Model," Ilorin Journal of Economic Policy, Department of Economics, University of Ilorin, vol. 9(2), pages 78-96, June.
    11. Hur, Joonyoung & Rhee, Wooheon, 2020. "Multipliers of expected vs. unexpected fiscal shocks: The case of Korea," Economic Modelling, Elsevier, vol. 85(C), pages 244-254.
    12. Carvalho, Carlos Viana de & Vilela, André D., 2015. "What lf Brazil Hadn't Floated the Real in 1999?," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 35(2), March.
    13. Gupta, Rangan & Steinbach, Rudi, 2013. "A DSGE-VAR model for forecasting key South African macroeconomic variables," Economic Modelling, Elsevier, vol. 33(C), pages 19-33.
    14. Mariusz Górajski & Zbigniew Kuchta, 2022. "Which hallmarks of optimal monetary policy rules matter in Poland? A stochastic dominance approach," Bank i Kredyt, Narodowy Bank Polski, vol. 53(2), pages 149-182.
    15. Funke, Michael & Paetz, Michael & Pytlarczyk, Ernest, 2011. "Stock market wealth effects in an estimated DSGE model for Hong Kong," Economic Modelling, Elsevier, vol. 28(1-2), pages 316-334, January.
    16. Sami Alpanda & Kevin Kotzé & Geoffrey Woglom, 2011. "Forecasting Performance Of An Estimated Dsge Model For The South African Economy," South African Journal of Economics, Economic Society of South Africa, vol. 79(1), pages 50-67, March.
    17. Stefano Grassi & Marco Lorusso & Francesco Ravazzolo, 2021. "Adaptive Importance Sampling for DSGE Models," BEMPS - Bozen Economics & Management Paper Series BEMPS84, Faculty of Economics and Management at the Free University of Bozen.
    18. Ghent, Andra C., 2009. "Comparing DSGE-VAR forecasting models: How big are the differences?," Journal of Economic Dynamics and Control, Elsevier, vol. 33(4), pages 864-882, April.
    19. Lie, Denny, 2021. "Implications of state-dependent pricing for DSGE model-based policy analysis in Indonesia," Economic Analysis and Policy, Elsevier, vol. 71(C), pages 532-552.
    20. Schorfheide, Frank & Sill, Keith & Kryshko, Maxym, 2010. "DSGE model-based forecasting of non-modelled variables," International Journal of Forecasting, Elsevier, vol. 26(2), pages 348-373, April.

    More about this item


    Macroeconomics; Covid-19; Growth;
    All these keywords.

    JEL classification:

    • F43 - International Economics - - Macroeconomic Aspects of International Trade and Finance - - - Economic Growth of Open Economies
    • F62 - International Economics - - Economic Impacts of Globalization - - - Macroeconomic Impacts
    • H12 - Public Economics - - Structure and Scope of Government - - - Crisis Management
    • O11 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - Macroeconomic Analyses of Economic Development

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cpm:dynare:064. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sébastien Villemot (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.