IDEAS home Printed from
   My bibliography  Save this paper

The socially optimal energy transition in a residential neighbourhood in the Netherlands


  • Arie ten Cate



The coming energy transition in residential neighbourhoods in the Netherlands is the result of the increasing cost of CO2 emission and the decreasing costs of solar PhotoVoltaics (PV) and alternative techniques of residential heating, namely Combined Heat and Power (CHP) and heat pump. The optimal transition is found by minimizing the total discounted social costs of residential energy consumption and generation. Social costs include the cost of CO2 emission and the investment in the electric network. The model integrates economics and the electric constraints based on the Alternating Current (AC) network power flow. The results indicate that in the optimal transition nearly all houses are going to use an air-to-water heat pump with auxiliary gas heating. This shift from gas to electricity depends very little on the future CO2 price or the network costs. Solar PV is not yet socially profitable at this moment. The "business case" for a household, using private costs, includes taxes and excludes CO2 costs and uses a higher discount rate. In the resulting optimum no heat pumps are used. However, reducing the ratio of the electricity tax versus the gas tax moves the private optimum to the social optimum. In order to use the model (with GAMS) or to verify table 18 (with Octave/Matlab), download the packed file below (If needed: rename it from .txt to .zip and unpack the file). After the publication , the following problem was noted by a reader. According to section 5.3, first paragraph, the heat pump is socially optimal in the old neighbourhood. However, in general this is somewhat unrealistic: the heat pump has a low water temperature, requiring enlarging the capacity of the radiators. Also: "starting at 20 euro" at page 11 is simply the actual value up to 2010.

Suggested Citation

  • Arie ten Cate, 2012. "The socially optimal energy transition in a residential neighbourhood in the Netherlands," CPB Discussion Paper 222, CPB Netherlands Bureau for Economic Policy Analysis.
  • Handle: RePEc:cpb:discus:222

    Download full text from publisher

    File URL:
    Download Restriction: no

    References listed on IDEAS

    1. Scarpa, Riccardo & Willis, Ken, 2010. "Willingness-to-pay for renewable energy: Primary and discretionary choice of British households' for micro-generation technologies," Energy Economics, Elsevier, vol. 32(1), pages 129-136, January.
    2. Meier, Helena & Rehdanz, Katrin, 2010. "Determinants of residential space heating expenditures in Great Britain," Energy Economics, Elsevier, vol. 32(5), pages 949-959, September.
    3. Durand-Lasserve, Olivier & Pierru, Axel & Smeers, Yves, 2010. "Uncertain long-run emissions targets, CO2 price and global energy transition: A general equilibrium approach," Energy Policy, Elsevier, vol. 38(9), pages 5108-5122, September.
    4. Macintosh, Andrew & Wilkinson, Deb, 2011. "Searching for public benefits in solar subsidies: A case study on the Australian government's residential photovoltaic rebate program," Energy Policy, Elsevier, vol. 39(6), pages 3199-3209, June.
    5. DeCarolis, Joseph F., 2011. "Using modeling to generate alternatives (MGA) to expand our thinking on energy futures," Energy Economics, Elsevier, vol. 33(2), pages 145-152, March.
    6. Mozumder, Pallab & Vásquez, William F. & Marathe, Achla, 2011. "Consumers' preference for renewable energy in the southwest USA," Energy Economics, Elsevier, vol. 33(6), pages 1119-1126.
    7. Rob Aalbers & Viktoria Kocsis & Victoria Shestalova, 2011. "Optimal regulation under unknown supply of distributed generation," CPB Discussion Paper 192, CPB Netherlands Bureau for Economic Policy Analysis.
    8. Rehdanz, Katrin, 2007. "Determinants of residential space heating expenditures in Germany," Energy Economics, Elsevier, vol. 29(2), pages 167-182, March.
    9. Vaage, Kjell, 2000. "Heating technology and energy use: a discrete/continuous choice approach to Norwegian household energy demand," Energy Economics, Elsevier, vol. 22(6), pages 649-666, December.
    10. Arie ten Cate, 2010. "Hourglass models of world-wide problems such as climate change," CPB Memorandum 238, CPB Netherlands Bureau for Economic Policy Analysis.
    11. Manning, Neil & Rees, Ray, 1982. "Synthetic demand functions for solar energy," Energy Economics, Elsevier, vol. 4(4), pages 225-231, October.
    12. Monahan, J. & Powell, J.C., 2011. "A comparison of the energy and carbon implications of new systems of energy provision in new build housing in the UK," Energy Policy, Elsevier, vol. 39(1), pages 290-298, January.
    13. Goto, Hisanori & Goto, Mika & Sueyoshi, Toshiyuki, 2011. "Consumer choice on ecologically efficient water heaters: Marketing strategy and policy implications in Japan," Energy Economics, Elsevier, vol. 33(2), pages 195-208, March.
    14. Braun, Frauke G., 2010. "Determinants of households' space heating type: A discrete choice analysis for German households," Energy Policy, Elsevier, vol. 38(10), pages 5493-5503, October.
    15. Paatero, Jukka V. & Lund, Peter D., 2007. "Effects of large-scale photovoltaic power integration on electricity distribution networks," Renewable Energy, Elsevier, vol. 32(2), pages 216-234.
    Full references (including those not matched with items on IDEAS)

    More about this item

    JEL classification:

    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • Q42 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Alternative Energy Sources
    • Q48 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Government Policy
    • Q58 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environmental Economics: Government Policy

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cpb:discus:222. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.